Variational Image Restoration and Decomposition in Shearlet Smoothness Spaces

被引:3
|
作者
Li Min [1 ]
Xu Chen [2 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Shearlet; Variaitional; Decomposition; Image restoration; TOTAL VARIATION MINIMIZATION; TEXTURES;
D O I
10.1049/cje.2017.08.021
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the shearlet-based variational model for image restoration and decomposition. The new model can be seen as generalizations of DaubechiesTeschke's model. By using regularization term in shearlets smoothness spaces, and writing the problem in a shearlet framework, we obtain elegant shearlet shrinkage schemes. Furthermore, the model allows us to incorporate general bounded linear blur operators into the problem. The experiments on denoising, deblurring and decomposition of images show that our algorithm is very efficient.
引用
收藏
页码:1017 / 1021
页数:5
相关论文
共 50 条
  • [1] Variational Image Restoration and Decomposition in Shearlet Smoothness Spaces
    LI Min
    XU Chen
    Chinese Journal of Electronics, 2017, 26 (05) : 1017 - 1021
  • [2] Variational Image Decomposition in Shearlet Smoothness Spaces
    Li, Min
    Sun, Xiaoli
    Xu, Chen
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 352 - 355
  • [3] Shearlet Smoothness Spaces
    Demetrio Labate
    Lucia Mantovani
    Pooran Negi
    Journal of Fourier Analysis and Applications, 2013, 19 : 577 - 611
  • [4] Shearlet Smoothness Spaces
    Labate, Demetrio
    Mantovani, Lucia
    Negi, Pooran
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (03) : 577 - 611
  • [5] Variational image restoration and decomposition with curvelet shrinkage
    Jiang, Lingling
    Feng, Xiangchu
    Yin, Haiqing
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 30 (02) : 125 - 132
  • [6] Variational Image Restoration and Decomposition with Curvelet Shrinkage
    Lingling Jiang
    Xiangchu Feng
    Haiqing Yin
    Journal of Mathematical Imaging and Vision, 2008, 30 : 125 - 132
  • [7] Multiscale variational decomposition and its application for image hierarchical restoration
    Tang, Liming
    He, Chuanjiang
    COMPUTERS & ELECTRICAL ENGINEERING, 2016, 54 : 354 - 369
  • [8] Image selective restoration using multi-scale variational decomposition
    Tang, Liming
    Fang, Zhuang
    Xiang, Changcheng
    Chen, Shiqiang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 40 : 638 - 655
  • [9] Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising
    Daubechies, I
    Teschke, G
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) : 1 - 16
  • [10] Non-convex and non-smooth variational decomposition for image restoration
    Tang Liming
    Zhang Honglu
    He Chuanjiang
    Fang Zhuang
    APPLIED MATHEMATICAL MODELLING, 2019, 69 : 355 - 377