Nondegeneracy concepts for zeros of piecewise smooth functions

被引:3
|
作者
Sznajder, R [1 ]
Gowda, MS
机构
[1] Bowie State Univ, Dept Math, Bowie, MD 20715 USA
[2] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
关键词
nondegenerate zero; g-nondegenerate zero; piecewise smooth function; complementarity; affine variational inequality;
D O I
10.1287/moor.23.1.221
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A zero of a piecewise smooth function Sis said to be nondegenerate if the function is Frechet differentiable at that point. Using this concept, we describe the usual nondegeneracy notions in the settings of nonlinear (vertical, horizontal, mixed) complementarity problems and the variational inequality problem corresponding to a polyhedral convex set. Some properties of nondegenerate zeros of piecewise affine functions are described. We generalize a recent result of Ferris and Pang on the existence of a nondegenerate solution of an affine variational inequality problem which itself is a generalization of a theorem of Goldman and Tucker.
引用
收藏
页码:221 / 238
页数:18
相关论文
共 50 条