Deep Supervised Learning to Estimate True Rough Line Images From SEM Images

被引:5
|
作者
Chaudhary, Narendra [1 ]
Savari, Serap A. [1 ]
Yeddulapalli, S. S. [1 ]
机构
[1] Texas A&M Univ, Mail Stop 3128 TAMU, College Stn, TX 77843 USA
关键词
Line Edge Roughness; Scanning Electron Microscopy; Deep Learning; Stochastics; Denoising; SURFACES;
D O I
10.1117/12.2324341
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We use deep supervised learning for the Poisson denoising of low-dose scanning electron microscope (SEM) images as a step in the estimation of line edge roughness (LER) and line width roughness (LWR). Our denoising algorithm applies a deep convolutional neural network called SEMNet with 17 convolutional, 16 batch-normalization and 16 dropout layers to noisy images. We trained and tested SEMNet with a dataset of 100800 simulated SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. SEMNet achieved considerable improvements in peak signal-to-noise ratio (PSNR) as well as the best LER/LWR estimation accuracy compared with standard image denoisers.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Automated Rough Line Edge Estimation from SEM Images using Deep Convolutional Neural Networks
    Chaudhary, Narendra
    Savari, Serap A.
    Yeddulapalli, S. S.
    [J]. PHOTOMASK TECHNOLOGY 2018, 2018, 10810
  • [2] Weakly Supervised Collaborative Learning for Airborne Pollen Segmentation and Classification from SEM Images
    Li, Jianqiang
    Xu, Qinlan
    Cheng, Wenxiu
    Zhao, Linna
    Liu, Suqin
    Gao, Zhengkai
    Xu, Xi
    Ye, Caihua
    You, Huanling
    [J]. LIFE-BASEL, 2023, 13 (01):
  • [3] Supervised conversion from Landsat-8 images to Sentinel-2 images with deep learning
    Isa, Sani M.
    Suharjito
    Kusuma, Gede Putera
    Cenggoro, Tjeng Wawan
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 182 - 208
  • [4] Learning to estimate scenes from images
    Freeman, WT
    Pasztor, EC
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 775 - 781
  • [5] Power Line Recognition From Aerial Images With Deep Learning
    Yetgin, Omer Emre
    Benligiray, Burak
    Gerek, Omer Nezih
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (05) : 2241 - 2252
  • [6] Towards a Visualization of Deep Neural Networks For Rough Line Images
    Chaudhary, Narendra
    Savari, Serap A.
    [J]. 35TH EUROPEAN MASK AND LITHOGRAPHY CONFERENCE (EMLC 2019), 2019, 11177
  • [7] BUILDING EXTRACTION FROM REMOTE SENSING IMAGES WITH DEEP LEARNING IN A SUPERVISED MANNER
    Chen, Kaiqiang
    Fu, Kun
    Gao, Xin
    Yan, Menglong
    Sun, Xian
    Zhang, Huan
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1672 - 1675
  • [8] Depth Estimation from SEM Images using Deep Learning and Angular Data Diversity
    Houben, Tim
    Pisarenco, Maxim
    Huisman, Thomas
    Onvlee, Hans
    van der Sommen, Fons
    de With, Peter
    [J]. METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVII, 2023, 12496
  • [9] Generalizable semi-supervised learning method to estimate mass from sparsely annotated images
    Hamdan, Muhammad K. A.
    Rover, Diane T.
    Darr, Matthew J.
    Just, John
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 175
  • [10] LineDL: Processing Images Line-by-Line With Deep Learning
    Huang, Yujie
    Chen, Wenshu
    Peng, Liyuan
    Liu, Yuhao
    Wang, Mingyu
    Zhang, Xiao-Ping
    Zeng, Xiaoyang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3150 - 3162