Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood

被引:70
|
作者
Yang, Yunwen [1 ]
Wang, Huixia Judy [2 ]
He, Xuming [3 ]
机构
[1] Google Inc, Seattle, WA 98103 USA
[2] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Bayesian; censoring; posterior; quantile regression; EMPIRICAL LIKELIHOOD; SURVIVAL ANALYSIS; MODEL; SELECTION;
D O I
10.1111/insr.12114
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper discusses the asymptotic validity of posterior inference of pseudo-Bayesian quantile regression methods with complete or censored data when an asymmetric Laplace likelihood is used. The asymmetric Laplace likelihood has a special place in the Bayesian quantile regression framework because the usual quantile regression estimator can be derived as the maximum likelihood estimator under such a model, and this working likelihood enables highly efficient Markov chain Monte Carlo algorithms for posterior sampling. However, it seems to be under-recognised that the stationary distribution for the resulting posterior does not provide valid posterior inference directly. We demonstrate that a simple adjustment to the covariance matrix of the posterior chain leads to asymptotically valid posterior inference. Our simulation results confirm that the posterior inference, when appropriately adjusted, is an attractive alternative to other asymptotic approximations in quantile regression, especially in the presence of censored data.
引用
收藏
页码:327 / 344
页数:18
相关论文
共 50 条
  • [1] On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood
    Sriram K.
    Ramamoorthi R.V.
    Ghosh P.
    [J]. Sankhya A, 2016, 78 (1): : 87 - 104
  • [2] On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood
    Sriram, Karthik
    Ramamoorthi, R. V.
    Ghosh, Pulak
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (01): : 87 - 104
  • [3] Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density
    Sriram, Karthik
    Ramamoorthi, R. V.
    Ghosh, Pulak
    [J]. BAYESIAN ANALYSIS, 2013, 8 (02): : 479 - 504
  • [4] A sandwich likelihood correction for Bayesian quantile regression based on the misspecified asymmetric Laplace density
    Sriram, Karthik
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 107 : 18 - 26
  • [5] The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model
    Narjes Gilani
    Reza Pourmousa
    [J]. Computational and Applied Mathematics, 2024, 43
  • [6] The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model
    Gilani, Narjes
    Pourmousa, Reza
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [7] Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution
    Benoit, Dries F.
    Van den Poel, Dirk
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2012, 27 (07) : 1174 - 1188
  • [8] Variational Bayesian inference for interval regression with an asymmetric Laplace distribution
    Zhang, J.
    Liu, M.
    Dong, M.
    [J]. NEUROCOMPUTING, 2019, 323 : 214 - 230
  • [9] BAYESIAN EMPIRICAL LIKELIHOOD FOR QUANTILE REGRESSION
    Yang, Yunwen
    He, Xuming
    [J]. ANNALS OF STATISTICS, 2012, 40 (02): : 1102 - 1131
  • [10] Bayesian quantile regression with approximate likelihood
    Feng, Yang
    Chen, Yuguo
    He, Xuming
    [J]. BERNOULLI, 2015, 21 (02) : 832 - 850