Data-driven switching modeling for MPC using Regression Trees and Random Forests

被引:41
|
作者
Smarra, Francesco [1 ]
Di Girolamo, Giovanni Domenico [1 ]
De Iuliis, Vittorio [1 ]
Jain, Achin [2 ]
Mangharam, Rahul [2 ]
D'Innocenzo, Alessandro [1 ]
机构
[1] Univ Aquila, Dept Informat Engn Comp Sci & Math, Laquila, Italy
[2] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
关键词
Regression Trees; Random Forests; Model predictive control; Switching systems; Markov Jump Systems; PREDICTIVE CONTROL; SYSTEM-IDENTIFICATION; LINEAR-SYSTEMS; HVAC SYSTEMS; STABILITY; ALGORITHM; CONTROLLABILITY; OPTIMIZATION; COMPLEXITY;
D O I
10.1016/j.nahs.2020.100882
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model Predictive Control is a well consolidated technique to design optimal control strategies, leveraging the capability of a mathematical model to predict a system's behavior over a time horizon. However, building physics-based models for complex large-scale systems can be cost and time prohibitive. To overcome this problem we propose a methodology to exploit machine learning techniques (i.e. Regression Trees and Random Forests) in order to build a Switching Affine dynamical model (deterministic and Markovian) of a large-scale system using historical data, and apply Model Predictive Control. A comparison with an optimal benchmark and related techniques is provided on an energy management system to validate the performance of the proposed methodology. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Data-driven Fluid Simulations using Regression Forests
    Ladicky, L'ubor
    Jeong, SoHyeon
    Solenthaler, Barbara
    Pollefeys, Marc
    Gross, Markus
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06):
  • [2] Data-Driven Synthetic Modeling of Trees
    Zhang, Xiaopeng
    Li, Hongjun
    Dai, Mingrui
    Ma, Wei
    Quan, Long
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (09) : 1214 - 1226
  • [3] Data-Driven Prognostics Using Random Forests: Prediction of Tool Wear
    Wu, Dazhong
    Jennings, Connor
    Terpenny, Janis
    Gao, Robert
    Kumara, Soundar
    [J]. PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 3, 2017,
  • [4] Data-Driven MPC for Quadrotors
    Torrente, Guillem
    Kaufmann, Elia
    Foehn, Philipp
    Scaramuzza, Davide
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 3769 - 3776
  • [5] Data-driven modelling of the Reynolds stress tensor using random forests with invariance
    Kaandorp, Mikael L. A.
    Dwight, Richard P.
    [J]. COMPUTERS & FLUIDS, 2020, 202 (202)
  • [6] Data-Driven Predictive Modeling of Mineral Prospectivity Using Random Forests: A Case Study in Catanduanes Island (Philippines)
    Carranza, Emmanuel John M.
    Laborte, Alice G.
    [J]. NATURAL RESOURCES RESEARCH, 2016, 25 (01) : 35 - 50
  • [7] Data-Driven Predictive Modeling of Mineral Prospectivity Using Random Forests: A Case Study in Catanduanes Island (Philippines)
    Emmanuel John M. Carranza
    Alice G. Laborte
    [J]. Natural Resources Research, 2016, 25 : 35 - 50
  • [8] Improving Industrial MPC Performance with Data-Driven Disturbance Modeling
    Sun, Zhijie
    Zhao, Yu
    Qin, S. Joe
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 1922 - 1927
  • [9] Pricing Bermudan Options Using Regression Trees/Random Forests
    Ech-Chafiq, Zineb El Filali
    Labordere, Pierre Henry
    Lelong, Jerome
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2023, 14 (04): : 1113 - 1139
  • [10] Data-driven exploration of heterogeneous gasoline price elasticities using generalized random forests
    Zhang, Yingheng
    Li, Haojie
    Ren, Gang
    [J]. TRANSPORTATION, 2023,