A generalized Wang-Landau algorithm for Monte Carlo computation

被引:40
|
作者
Liang, FM [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
1/k-ensemble sampling; importance sampling; Markov chain Monte Carlo; Monte Carlo integration; Monte Carlo optimization; multicanonical algorithm; Wang-Landau algorithm;
D O I
10.1198/016214505000000259
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inference for a complex system with a rough energy landscape is a central topic in Monte Carlo computation. Motivated by the successes of the Wang-Landau algorithm in discrete systems, we generalize the algorithm to continuous systems. The generalized algorithm has some features that conventional Monte Carlo algorithms do not have. First, it provides a new method for Monte Carlo integration based on stochastic approximation; second, it is an excellent tool for Monte Carlo optimization. In an appropriate setting, the algorithm can lead to a random walk in the energy space, and thus it can sample relevant parts of the sample space, even in the presence of many local energy minima. The generalized algorithm can be conveniently used in many problems of Monte Carlo integration and optimization, for example, normalizing constant estimation, model selection, highest posterior density interval construction, and function optimization. Our numerical results show that the algorithm outperforms simulated annealing and parallel tempering in optimization for the system with a rough energy landscape. Some theoretical results on the convergence of the algorithm are provided.
引用
收藏
页码:1311 / 1327
页数:17
相关论文
共 50 条
  • [1] Simulation of polymers by the Monte Carlo method using the Wang-Landau algorithm
    P. N. Vorontsov-Velyaminov
    N. A. Volkov
    A. A. Yurchenko
    A. P. Lyubartsev
    [J]. Polymer Science Series A, 2010, 52 : 742 - 760
  • [2] Simulation of Polymers by the Monte Carlo Method using the Wang-Landau Algorithm
    Vorontsov-Velyaminov, P. N.
    Volkov, N. A.
    Yurchenko, A. A.
    Lyubartsev, A. P.
    [J]. POLYMER SCIENCE SERIES A, 2010, 52 (07) : 742 - 760
  • [3] Estimating the partition function zeros by using the Wang-Landau Monte Carlo algorithm
    Seung-Yeon Kim
    [J]. Journal of the Korean Physical Society, 2017, 70 : 561 - 566
  • [4] Wang-Landau Monte Carlo formalism applied to ferroelectrics
    Bin-Omran, S.
    Kornev, Igor A.
    Bellaiche, L.
    [J]. PHYSICAL REVIEW B, 2016, 93 (01)
  • [5] Estimating the Partition Function Zeros by Using the Wang-Landau Monte Carlo Algorithm
    Kim, Seung-Yeon
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 70 (06) : 561 - 566
  • [6] Monte Carlo simulations of Heisenberg magnets by the Wang-Landau method
    Lozhnikov, V. E.
    Prudnikov, P. V.
    Mamonova, M. V.
    Sorokin, A. V.
    Baksheev, G. G.
    [J]. VII EURO-ASIAN SYMPOSIUM TRENDS IN MAGNETISM, 2019, 1389
  • [7] Stochastic approximation Monte Carlo and Wang-Landau Monte Carlo applied to a continuum polymer model
    Werlich, B.
    Shakirov, T.
    Taylor, M. P.
    Paul, W.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2015, 186 : 65 - 70
  • [8] Wang-Landau Monte Carlo simulation of the blume-capel model
    Silva, CJ
    Caparica, AA
    Plascak, JA
    [J]. PHYSICAL REVIEW E, 2006, 73 (03):
  • [9] Incorporating configurational-bias Monte Carlo into the Wang-Landau algorithm for continuous molecular systems
    Maerzke, Katie A.
    Gai, Lili
    Cummings, Peter T.
    McCabe, Clare
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (20):
  • [10] Globule transitions of a single homopolymer: A Wang-Landau Monte Carlo study
    Parsons, Drew F.
    Williams, David R. M.
    [J]. PHYSICAL REVIEW E, 2006, 74 (04):