Construction of compactly supported M-band wavelets

被引:45
|
作者
Bi, N [1 ]
Dai, XR
Sun, QY
机构
[1] Hangzhou Normal Coll, Dept Math, Hangzhou 310012, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
multiresolution; M-band scaling function; M-band wavelets; cardinal function; orthonormality;
D O I
10.1006/acha.1999.0236
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the asymptotic regularity of Daubechies scaling functions and construct examples of M-band scaling functions which are both orthonormal and cardinal for M greater than or equal to 3. (C) 1999 Academic Press.
引用
收藏
页码:113 / 131
页数:19
相关论文
共 50 条
  • [1] Orthogonal M-band compactly supported interpolating wavelet theory
    Zhang, JK
    Bao, Z
    [J]. SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 1999, 42 (06): : 567 - 583
  • [2] Orthogonal M-band compactly supported interpolating wavelet theory
    Jiankang Zhang
    Zheng Bao
    [J]. Science in China Series E: Technological Sciences, 1999, 42 : 567 - 583
  • [3] Orthogonal M-band compactly supported interpolating wavelet theory
    张建康
    保铮
    [J]. Science China Technological Sciences, 1999, (06) : 567 - 583
  • [4] Orthogonal M-band compactly supported scaling functions with sampling property
    Zhang, JK
    Bao, Z
    [J]. WAVELET APPLICATIONS V, 1998, 3391 : 659 - 666
  • [5] M-band compactly supported orthogonal symmetric interpolating scaling functions
    Shui, PL
    Bao, Z
    Zhang, XD
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (08) : 1704 - 1713
  • [6] An algebraic construction of orthonormal M-band wavelets with perfect reconstruction
    Lin, T
    Xu, SF
    Shi, QY
    Hao, PW
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 717 - 730
  • [7] Construction of multivariate compactly supported orthonormal wavelets
    Ming-Jun Lai
    [J]. Advances in Computational Mathematics, 2006, 25 : 41 - 56
  • [8] Construction of compactly supported biorthogonal wavelets II
    Riemenschneider, SD
    Shen, ZW
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 264 - 272
  • [9] Construction of Compactly Supported Bivariate Orthogonal Wavelets
    YANG Jian-wei 1
    Henan Institute of Finance and Economic
    2.Faculty o f Science
    [J]. Chinese Quarterly Journal of Mathematics, 2003, (03) : 242 - 246
  • [10] Construction of trivariate biorthogonal compactly supported wavelets
    Sun, Lei
    Cheng, Zhengxing
    Huang, Yongdong
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1412 - 1420