Low-Resolution Fully Polarimetric SAR and High-Resolution Single-Polarization SAR Image Fusion Network

被引:15
|
作者
Lin, Liupeng [1 ]
Li, Jie [2 ]
Shen, Huanfeng [1 ,3 ]
Zhao, Lingli [4 ]
Yuan, Qiangqiang [2 ,3 ]
Li, Xinghua [4 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
[3] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
[4] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Superresolution; Data mining; Synthetic aperture radar; Spatial resolution; Radar polarimetry; Training; Cross-attention mechanism (CroAM); fully polarimetric synthetic aperture radar (PolSAR); fusion; polarimetric loss; RCNN; single-polarization SAR (SinSAR); SHIP DETECTION; CLASSIFICATION; SUPERRESOLUTION; DAMAGE;
D O I
10.1109/TGRS.2021.3121166
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The data fusion technology aims to aggregate the characteristics of different data and to obtain products with multiple data advantages. To solve the problem of reduced resolution of polarimetric synthetic aperture radar (PolSAR) images due to system limitations, we propose a fully PolSAR images and single-polarization synthetic aperture radar (SinSAR) images fusion network to generate high-resolution PolSAR (HR-PolSAR) images. To take advantage of the polarimetric information of the low-resolution PolSAR (LR-PolSAR) images and the spatial information of the high-resolution single-polarization SAR (HR-SinSAR) images, we propose a fusion framework for joint LR-PolSAR images and HR-SinSAR images and design a cross-attention mechanism to extract features from the joint input data. Besides, based on the physical imaging mechanism, we designed the PolSAR polarimetric loss functions for constrained network training. The experimental results confirm the superiority of the fusion network over traditional algorithms. The average peak signal-to-noise ratio (PSNR) is increased by more than 3.6 dB, and the average mean absolute error (MAE) is reduced to less than 0.07. Experiments on polarimetric decomposition and polarimetric signature show that it maintains polarimetric information well.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Contour detection in high-resolution polarimetric SAR images
    Borghys, D
    Perneel, C
    Acheroy, M
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES III, 2000, 4173 : 99 - 110
  • [2] Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR
    Lee, JS
    Grunes, MR
    Pottier, E
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (11): : 2343 - 2351
  • [3] Building detection from single high-resolution SAR image
    Zhang, Yonghua
    Wen, Xianbin
    Xu, Haixia
    [J]. Chinese Optics Letters, 2012, 10 (SUPPL.2)
  • [4] Detecting the number of buildings in a single high-resolution SAR image
    Cao, Yongfeng
    Su, Caixia
    Yang, Guangbin
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2014, 47 : 513 - 535
  • [5] Soil Moisture Retrievals in Aeolian Sand Mining Areas Using Temporal, Single-Polarization, High-Resolution SAR
    Ma, Wei
    Ma, Chao
    [J]. FREQUENZ, 2018, 72 (11-12) : 547 - 560
  • [6] STATISTICAL EMULATION OF HIGH-RESOLUTION SAR WIND FIELDS FROM LOW-RESOLUTION MODEL PREDICTIONS
    He, Liyun
    Chapron, Bertrand
    Tournadre, Jean
    Fablet, Ronan
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3914 - 3917
  • [7] High-Resolution Optical and SAR Image Fusion for Building Database Updating
    Poulain, Vincent
    Inglada, Jordi
    Spigai, Marc
    Tourneret, Jean-Yves
    Marthon, Philippe
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (08): : 2900 - 2910
  • [8] Improving coherence estimation for high-resolution polarimetric SAR interferometry
    Vasile, G
    Trouvé, E
    Ciuc, M
    Bolon, P
    Buzuloui, V
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 1796 - 1799
  • [9] Fully Polarimetric High Resolution Airborne SAR Image Change Detection with Morphological Component Analysis
    Dominguez, E. Mendez
    Henke, D.
    Small, D.
    Meier, E.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXI, 2015, 9643
  • [10] High-resolution DEM building with SAR interferometry and high-resolution optical image
    Hadj-Sahraoui, Omar
    Fizazi, Hadria
    Berrichi, Faouzi
    Chamakhi, Djemoui
    Kebir, Lahcen Wahib
    [J]. IET IMAGE PROCESSING, 2019, 13 (05) : 713 - 721