Predicting the evolution of dislocation density following hot deformation

被引:4
|
作者
Huang, Mingxin [1 ]
Perlade, Astrid [2 ]
Rivera-Diaz-del-Castillo, Pedro E. J. [3 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[2] ArcelorMittal Res, F-57283 Maizieres Les Metz, France
[3] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
关键词
dislocations; stress relaxation; recovery; STEADY-STATE DEFORMATION; C-MN STEEL; FCC METALS; RECOVERY; STRESS; RECRYSTALLIZATION; THERMODYNAMICS; AUSTENITE; BEHAVIOR; KINETICS;
D O I
10.1080/09500839.2011.565812
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A model to predict the evolution of dislocation density following hot deformation is presented in this article. The model is validated by stress relaxation experiments on austenite at various temperatures. It is found that the activation energy for self-diffusion is the rate-controlling parameter determining the evolution of dislocation density, and hence the recovery rate. A methodology to control the softening experienced by high-temperature alloys is proposed.
引用
收藏
页码:387 / 393
页数:7
相关论文
共 50 条
  • [1] Hot deformation behavior and dislocation density evolution regularity of Cr8 alloy
    Chen X.-W.
    Wang J.-Y.
    Yang X.-Q.
    Huang T.
    Song K.-X.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2020, 50 (01): : 91 - 99
  • [2] Evolution of Austenite Dislocation Density During Hot Deformation Using a Physical Dynamic Recrystallization Model
    Zhou, Peng
    Ma, Qingxian
    PROCEEDINGS OF THE 3RD PAN AMERICAN MATERIALS CONGRESS, 2017, : 709 - 721
  • [3] Modelling hot deformation behaviour based on evolution of dislocation substructures
    Zhu, Q
    Shercliff, HR
    Sellars, CM
    THERMEC '97 - INTERNATIONAL CONFERENCE ON THERMOMECHANICAL PROCESSING OF STEELS AND OTHER MATERIALS, VOLS I-II, 1997, : 2039 - 2045
  • [4] Evolution of dislocation density distributions in copper during tensile deformation
    Jiang, J.
    Britton, T. B.
    Wilkinson, A. J.
    ACTA MATERIALIA, 2013, 61 (19) : 7227 - 7239
  • [5] A Model for Predicting the Size of Austenite Grains upon Hot Deformation of Low-Alloyed Steels Considering the Evolution of the Dislocation Structure
    I. I. Gorbachev
    E. I. Korzunova
    V. V. Popov
    D. M. Khabibulin
    N. V. Urtsev
    Physics of Metals and Metallography, 2023, 124 : 1278 - 1285
  • [6] Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy
    Fu, Lei
    Wang, Bao-Yu
    Lin, Jian-Guo
    Zhou, Jing
    Ma, Wen-Yu
    Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, 2013, 35 (10): : 1333 - 1339
  • [7] A Model for Predicting the Size of Austenite Grains upon Hot Deformation of Low-Alloyed Steels Considering the Evolution of the Dislocation Structure
    Gorbachev, I. I.
    Korzunova, E. I.
    Popov, V. V.
    Khabibulin, D. M.
    Urtsev, N. V.
    PHYSICS OF METALS AND METALLOGRAPHY, 2023, 124 (12): : 1278 - 1285
  • [8] Modeling mean deformation resistance of hot rolling Nb steel based on dislocation density
    Wang, Dong-Cheng
    Peng, Yan
    Liu, Hong-Min
    Kang T'ieh/Iron and Steel (Peking), 2006, 41 (SUPPL. 2): : 343 - 347
  • [9] EQUATION OF THE DISLOCATION DENSITY EVOLUTION AND THE 1ST STAGE OF DEFORMATION STRENGTHENING OF CRYSTALS
    MALYGIN, GA
    FIZIKA TVERDOGO TELA, 1993, 35 (05): : 1328 - 1342
  • [10] Evolution of dislocation density in a hot rolled Zr-2.5Nb alloy with plastic deformation studied by neutron diffraction and transmission electron microscopy
    Long, F.
    Balogh, L.
    Daymond, M. R.
    PHILOSOPHICAL MAGAZINE, 2017, 97 (31) : 2888 - 2914