Interpolation by completely positive maps

被引:27
|
作者
Li, Chi-Kwong [2 ]
Poon, Yiu-Tung [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50051 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2011年 / 59卷 / 10期
基金
美国国家科学基金会;
关键词
completely positive map; quantum operations; dilations; Hermitian matrices; eigenvalues; majorization; MATRIX MAJORIZATION; NUMERICAL RANGES; DILATIONS;
D O I
10.1080/03081087.2011.585987
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given commuting families of Hermitian matrices {A(1), ... , A(k)} and {B1, ... , B(k)}, conditions for the existence of a completely positive map Phi, such that Phi (Aj)B(j) for j = 1, ... , k, are studied. Additional properties such as unital or/and trace preserving on the map Phi are also considered. Connections of the study to dilation theory, matrix inequalities, unitary orbits and quantum information science are mentioned.
引用
收藏
页码:1159 / 1170
页数:12
相关论文
共 50 条
  • [1] Interpolation for Completely Positive Maps: Numerical Solutions
    Ambrozie, Calin
    Gheondea, Aurelian
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (01): : 13 - 22
  • [3] An interpolation problem for completely positive maps on matrix algebras: solvability and parametrization
    Ambrozie, Calin-Grigore
    Gheondea, Aurelian
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 826 - 851
  • [4] Positive maps that are not completely positive
    Yu, SX
    [J]. PHYSICAL REVIEW A, 2000, 62 (02): : 4
  • [5] Positive maps that are not completely positive
    Yu, Sixia
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (02): : 024302 - 024301
  • [6] On Norms of Completely Positive Maps
    Szarek, Stanislaw J.
    [J]. TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 : 535 - 538
  • [7] Nilpotent completely positive maps
    B. V. Rajarama Bhat
    Nirupama Mallick
    [J]. Positivity, 2014, 18 : 567 - 577
  • [8] Decomposition of completely positive maps
    Paul, M
    [J]. MATHEMATISCHE NACHRICHTEN, 1997, 185 : 227 - 237
  • [9] THE PURIFICATION OF COMPLETELY POSITIVE MAPS
    DEMOEN, B
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (NOV) : 545 - 548
  • [10] DILATIONS OF COMPLETELY POSITIVE MAPS
    DAVIES, EB
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 17 (APR): : 330 - 338