Work-hardening/softening behaviour of BCC polycrystals during changing strain paths: I. An integrated model based on substructure and texture evolution, and its prediction of the stress-strain behaviour of an if steel during two-stage strain paths

被引:211
|
作者
Peeters, B [1 ]
Seefeldt, M
Teodosiu, C
Kalidindi, SR
Van Houtte, P
Aernoudt, E
机构
[1] Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium
[2] Univ Penn, Dept Mat Engn, Philadelphia, PA 19104 USA
[3] Univ Paris 13, CNRS, LPMTM, F-93430 Villetaneuse, France
关键词
dislocations; microstructure; texture; constitutive equations; stress-strain behaviour;
D O I
10.1016/S1359-6454(01)00066-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For many years polycrystalline deformation models have been used as a physical approach to predict the anisotropic mechanical behaviour of materials during deformation, e.g. the r-values and yield loci. The crystallographic texture was then considered to be the main contributor to the overall anisotropy. However, recent studies have shown that the intragranular microstructural features influence strongly the anisotropic behaviour of b.c.c. polycrystals, as revealed by strain-path change tests (e.g. cross effect, Bausch-inger effect). This paper addresses a method of incorporating dislocation ensembles in the crystal plasticity constitutive framework, while accounting for their evolution during changing strain paths. Kinetic equations are formulated for the evolution of spatially inhomogeneous distributions of dislocations represented by three dislocation densities. This microstructural model is incorporated into a full-constraints Taylor model. The resulting model achieves for each crystallite a coupled calculation of slip activity and dislocation structure evolution, as a function of the crystallite orientation. Texture evolution and macroscopic flow stress are obtained as well. It is shown that this intragranular-microstructure based Taylor model is capable of predicting quantitatively the complex features displayed by stress-strain curves during various two-stage strain paths. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1607 / 1619
页数:13
相关论文
共 3 条