Fractional-order Hammerstein state-space modeling of nonlinear dynamic systems from input-output measurements

被引:15
|
作者
Rahmani, Mohammad-Reza [1 ]
Farrokhi, Mohammad [2 ]
机构
[1] Iran Univ Sci & Technol, Sch Elect Engn, Tehran 1684613114, Iran
[2] Iran Univ Sci & Technol, Ctr Excellence Modeling & Control Complex Syst, Sch Elect Engn, Tehran 1684613114, Iran
关键词
Hammerstein model; State estimation; Fractional-order systems; Neural networks; IDENTIFICATION METHOD; PARAMETER-ESTIMATION; LYAPUNOV FUNCTIONS; STABILITY;
D O I
10.1016/j.isatra.2019.06.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a continuous-time fractional-order Hammerstein state-space model with a systematic identification algorithm for modeling nonlinear dynamic systems. The proposed model consists of a radial-basis function neural network followed by a fractional-order system. The proposed identification scheme is accomplished in two stages. The structural parameters of the fractional-order system (i.e. the values of the fractional order and the degree of the denominator in the fractional order system) are estimated in the frequency domain. Then, the synaptic weights of the radial-basis function neural network and the coefficients of the fractional-order system are determined in the time domain via the Lyapunov stability theory, which guarantees stability of the given method and its convergence under a mild condition. Three examples are provided to show the effectiveness of the proposed method. (C) 2019 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 50 条
  • [1] Identification of nonlinear nonautonomous state space systems from input-output measurements
    Verdult, V
    Verhaegen, M
    Scherpen, J
    [J]. PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY 2000, VOLS 1 AND 2, 2000, : 410 - 414
  • [2] State-space analysis of linear fractional-order systems
    Guermah, Saïd
    Djennoune, Saïd
    Bettayeb, Maamar
    [J]. Journal Europeen des Systemes Automatises, 2008, 42 (6-8): : 825 - 838
  • [3] Necessary & sufficient conditions for the minimal state-space realisation of nonlinear systems from input-output information
    Leith, DJ
    Leithead, WE
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 2937 - 2942
  • [4] Input-output finite-time IT2 fuzzy dynamic sliding mode control for fractional-order nonlinear systems
    Kavikumar, Ramasamy
    Kwon, Oh-Min
    Lee, Seung-Hoon
    Sakthivel, Rathinasamy
    [J]. NONLINEAR DYNAMICS, 2022, 108 (04) : 3745 - 3760
  • [5] Input-output finite-time IT2 fuzzy dynamic sliding mode control for fractional-order nonlinear systems
    Ramasamy Kavikumar
    Oh-Min Kwon
    Seung-Hoon Lee
    Rathinasamy Sakthivel
    [J]. Nonlinear Dynamics, 2022, 108 : 3745 - 3760
  • [6] Modelling of nonlinear systems from input-output data for state space realization
    Foley, DC
    Sadegh, N
    [J]. PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 2980 - 2985
  • [7] IDENTIFICATION OF MULTISCALE STATE-SPACE MODELS FROM INPUT-OUTPUT DATA
    Martins, Marcelo N.
    Waschburger, Ronaldo
    Galvao, Roberto K. H.
    [J]. CONTROL AND INTELLIGENT SYSTEMS, 2015, 43 (01) : 8 - 16
  • [8] Input-Output Finite-Time Stability of Fractional-Order Positive Switched Systems
    Liang, Jinxia
    Wu, Baowei
    Wang, Yue-E
    Niu, Ben
    Xie, Xuejun
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (04) : 1619 - 1638
  • [9] Parametrizations of All Wavelet Filters: Input-Output and State-Space
    Daniel Alpay
    Palle Jorgensen
    Izchak Lewkowicz
    [J]. Sampling Theory in Signal and Image Processing, 2013, 12 (2-3): : 159 - 188
  • [10] State Delays Extraction in the Fractional-Order State-Space Model
    Ostalczyk, Piotr
    Bakala, Marcin
    Nowakowski, Jacek
    [J]. NON-INTEGER ORDER CALCULUS AND ITS APPLICATIONS, 2019, 496 : 204 - 216