Non-blocking k-ary Search Trees

被引:0
|
作者
Brown, Trevor [1 ]
Helga, Joanna [2 ]
机构
[1] Univ Toronto, Dept Comp Sci, Theory Croup, Toronto, ON M5S 1A1, Canada
[2] York Univ, DisCoVeri Grp, Dept Comp Sci & Engn, N York, ON M3J 1P3, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
data structures; non-blocking; concurrency; binary search tree; set;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents the first concurrent non-blocking k-ary search tree. Our data structure generalizes the recent non-blocking binary search tree of Ellen et al. [5] to trees in which each internal node has k children. Larger values of k decrease the depth of the tree, but lead to higher contention among processes performing updates to the tree. Our Java implementation uses single-word compare-and-set operations to coordinate updates to the tree. We present experimental results from a 16-core Sun machine with 128 hardware contexts, which show that our implementation achieves higher throughput than the non-blocking skip list of the Java class library and the leading lock-based concurrent search tree of Bronson et al. [3].
引用
收藏
页码:207 / +
页数:3
相关论文
共 50 条
  • [1] Non-blocking k-ary search trees
    Theory Group, Dept. of Computer Science, University of Toronto, Canada
    不详
    [J]. Lect. Notes Comput. Sci., (207-221):
  • [2] Non-blocking Binary Search Trees
    Ellen, Faith
    Fatourou, Panagiota
    Ruppert, Eric
    van Breugel, Franck
    [J]. PODC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2010, : 131 - 140
  • [3] ON FIBONACCI K-ARY TREES
    CHANG, DK
    [J]. FIBONACCI QUARTERLY, 1986, 24 (03): : 258 - 262
  • [4] SELF-ADJUSTING K-ARY SEARCH-TREES
    SHERK, M
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1989, 382 : 381 - 392
  • [5] SELF-ADJUSTING K-ARY SEARCH-TREES
    SHERK, M
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1995, 19 (01): : 25 - 44
  • [6] GENERATION AND RANKING OF K-ARY TREES
    ZAKS, S
    [J]. INFORMATION PROCESSING LETTERS, 1982, 14 (01) : 44 - 48
  • [7] The Amortized Complexity of Non-blocking Binary Search Trees
    Ellen, Faith
    Fatourou, Panagiota
    Helga, Joanna
    Ruppert, Eric
    [J]. PROCEEDINGS OF THE 2014 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC'14), 2014, : 332 - 340
  • [8] Recursive Generation of k-ary Trees
    Manes, K.
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    [J]. JOURNAL OF INTEGER SEQUENCES, 2009, 12 (07)
  • [9] Protected points in k-ary trees
    Mansour, Toufik
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (04) : 478 - 480
  • [10] Antibandwidth of complete k-ary trees
    Calamoneri, Tiziana
    Massini, Annalisa
    Toeroek, L'ubomir
    Vrt'o, Imrich
    [J]. DISCRETE MATHEMATICS, 2009, 309 (22) : 6408 - 6414