The mixing advantage for bounded random variables

被引:0
|
作者
Hamza, K. [1 ]
Sudbury, A. W. [1 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
关键词
Mixing; Stochastic ordering; Distribution of the maximum; RELIABILITY EQUIVALENCE; STATISTICS;
D O I
10.1016/j.spl.2011.03.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Corresponding to n independent non-negative random variables X-1, ..., X-n concentrated on a bounded interval set are values M-1, ..., M-n, where each M-i is the expected value of the maximum of n independent copies of X. We obtain a sharp upper bound for the expected value of the maximum of X-1, ..., X-n in terms of M-1, ..., M-n. This inequality is sharp. A similar result is demonstrated for minima. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1190 / 1195
页数:6
相关论文
共 50 条
  • [1] EXPONENTIAL INEQUALITIES FOR BOUNDED RANDOM VARIABLES
    Huang, Guangyue
    Guo, Xin
    Du, Hongxia
    He, Yi
    Miao, Yu
    [J]. MATHEMATICA SLOVACA, 2015, 65 (06) : 1557 - 1570
  • [2] Uncorrelatedness sets of bounded random variables
    Ostrovska, S
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 297 (01) : 257 - 266
  • [3] Comparing sums of independent bounded random variables and sums of Bernoulli random variables
    Berger, E
    [J]. STATISTICS & PROBABILITY LETTERS, 1997, 34 (03) : 251 - 258
  • [4] THE SPITZER LAW FOR ψ-MIXING RANDOM VARIABLES
    Liu, Xiangdong
    Jin, Xiaojie
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (03): : 883 - 888
  • [5] MIXING PROPERTY OF RANDOM-VARIABLES
    ROSLER, U
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 37 (04): : 329 - 340
  • [6] MOMENTS OF MIXING RANDOM-VARIABLES
    DOUKHAN, P
    PORTAL, F
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (02): : 129 - 132
  • [7] A Strong Law for Mixing Random Variables
    Dao Quang Tuyen
    [J]. Periodica Mathematica Hungarica, 1999, 38 (1-2) : 131 - 136
  • [8] A Random Forest Approach for Bounded Outcome Variables
    Weinhold, Leonie
    Schmid, Matthias
    Mitchell, Richard
    Maloney, Kelly O.
    Wright, Marvin N.
    Berger, Moritz
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 639 - 658
  • [9] An Inequality for the Sum of Independent Bounded Random Variables
    Christopher R. Dance
    [J]. Journal of Theoretical Probability, 2014, 27 : 358 - 369
  • [10] An Inequality for the Sum of Independent Bounded Random Variables
    Dance, Christopher R.
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (02) : 358 - 369