Large-scale L-BFGS using MapReduce

被引:0
|
作者
Chen, Weizhu [1 ]
Wang, Zhenghao [1 ]
Zhou, Jingren [1 ]
机构
[1] Microsoft, Albuquerque, NM 87107 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
L-BFGS has been applied as an effective parameter estimation method for various machine learning algorithms since 1980s. With an increasing demand to deal with massive instances and variables, it is important to scale up and parallelize L-BFGS effectively in a distributed system. In this paper, we study the problem of parallelizing the L-BFGS algorithm in large clusters of tens of thousands of shared-nothing commodity machines. First, we show that a naive implementation of L-BFGS using Map-Reduce requires either a significant amount of memory or a large number of map-reduce steps with negative performance impact. Second, we propose a new L-BFGS algorithm, called Vector-free L-BFGS, which avoids the expensive dot product operations in the two loop recursion and greatly improves computation efficiency with a great degree of parallelism. The algorithm scales very well and enables a variety of machine learning algorithms to handle a massive number of variables over large datasets. We prove the mathematical equivalence of the new Vector-free L-BFGS and demonstrate its excellent performance and scalability using real-world machine learning problems with billions of variables in production clusters.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Large-scale distributed L-BFGS
    Najafabadi M.M.
    Khoshgoftaar T.M.
    Villanustre F.
    Holt J.
    [J]. Najafabadi, Maryam M. (mmousaarabna2013@fau.edu), 1600, SpringerOpen (04)
  • [2] LM-CMA: An Alternative to L-BFGS for Large-Scale Black Box Optimization
    Loshchilov, Ilya
    [J]. EVOLUTIONARY COMPUTATION, 2017, 25 (01) : 143 - 171
  • [3] Algorithm 943: MSS: MATLAB Software for L-BFGS Trust-Region Subproblems for Large-Scale Optimization
    Erway, Jennifer B.
    Marcia, Roummel F.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2014, 40 (04):
  • [4] Shifted L-BFGS systems
    Erway, Jennifer B.
    Jain, Vibhor
    Marcia, Roummel F.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (05): : 992 - 1004
  • [5] A Method for Stochastic L-BFGS Optimization
    Qi, Peng
    Zhou, Wei
    Han, Jizhong
    [J]. 2017 2ND IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA 2017), 2017, : 156 - 160
  • [6] Three-dimensional magnetotelluric inversion using L-BFGS
    Lu, Libin
    Wang, Kunpeng
    Tan, Handong
    Li, Qingkun
    [J]. ACTA GEOPHYSICA, 2020, 68 (04) : 1049 - 1066
  • [7] Three-dimensional magnetotelluric inversion using L-BFGS
    Libin Lu
    Kunpeng Wang
    Handong Tan
    Qingkun Li
    [J]. Acta Geophysica, 2020, 68 : 1049 - 1066
  • [8] Shaped Reflector Antenna Design Using Large-scale BFGS
    Wang, Jian
    Deng, Jianhua
    Qiu, Yong
    [J]. 2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 4509 - 4512
  • [9] Efficient large-scale data analysis using mapreduce
    [J]. Kubo, R., 1600, Nippon Telegraph and Telephone Corp. (10):
  • [10] Efficient Large-scale Trace Checking Using MapReduce
    Bersani, Marcello M.
    Bianculli, Domenico
    Ghezzi, Carlo
    Krstic, Srdan
    San Pietro, Pierluigi
    [J]. 2016 IEEE/ACM 38TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 2016, : 888 - 898