Global methods in classical mechanics. The Euler-Lagrange equation

被引:0
|
作者
Grimaldi, P [1 ]
机构
[1] Univ Basilicata, Dipartimento Chim, I-85100 Potenza, Italy
关键词
Classical Mechanic; Tangent Bundle; Lagrange Equation; Smooth Manifold; Cotangent Bundle;
D O I
10.1023/A:1019110400670
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Starting from a smooth manifold Q as configurational space, the intrinsic form of Euler-Lagrange equation is derived using a differential geometrical approach in order to obtain a relation valid on the whole tangent bundle TQ that constitutes the phase space of a generical mechanical system.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [1] Global methods in classical mechanics. The Euler–Lagrange equation
    P. Grimaldi
    [J]. Journal of Mathematical Chemistry, 1998, 24 : 71 - 78
  • [2] On the validity of the Euler-Lagrange equation
    Ferriero, A
    Marchini, EM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) : 356 - 369
  • [3] On generalizations of the Euler-Lagrange equation
    Ledzewicz, U
    Schaettler, H
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (01) : 339 - 350
  • [4] On the validity of the Euler-Lagrange equation
    Cellina, A
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 171 (02) : 430 - 442
  • [5] A GENERALIZED EULER-LAGRANGE EQUATION
    ARTHURS, AM
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 : 399 - &
  • [6] THE VALIDITY OF THE EULER-LAGRANGE EQUATION
    Bonfanti, Giovanni
    Cellina, Arrigo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (02) : 511 - 517
  • [7] ON THE EULER-LAGRANGE MAP IN SYMPLECTIC MECHANICS
    BARONE, F
    GRASSINI, R
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1988, 102 (04): : 437 - 440
  • [8] EULER-LAGRANGE EQUATION FOR SODIUM ATOM
    SAMEC, A
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (04): : 520 - &
  • [9] Euler-Lagrange Equation in Free Coordinates
    Alotaibi, Mastourah M.
    Altoum, Sami H.
    [J]. JOURNAL OF MATHEMATICS, 2022, 2022
  • [10] INVARIANT DERIVATION OF THE EULER-LAGRANGE EQUATION
    NESTER, JM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (21): : L1013 - L1017