Global attractors for a class of semilinear degenerate parabolic equations

被引:1
|
作者
Zhu, Kaixuan [1 ]
Xie, Yongqin [2 ]
机构
[1] Hunan Univ Arts & Sci, Hunan Prov Cooperat Innovat Ctr Construct & Dev D, Sch Math & Phys Sci, Changde 415000, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China
来源
OPEN MATHEMATICS | 2021年 / 19卷 / 01期
关键词
degenerate parabolic equations; polynomial growth of arbitrary order; asymptotic higher-order integrability; global attractors; REACTION-DIFFUSION EQUATION; DISTRIBUTION DERIVATIVES;
D O I
10.1515/math-2021-0018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the long-time behavior for a class of semi-linear degenerate parabolic equations with the nonlinearity f satisfying the polynomial growth of arbitrary p - 1 order. We establish some new estimates, i.e., asymptotic higher-order integrability for the difference of the solutions near the initial time. As an application, we obtain the (L-2(Omega), L-p(Omega))-global attractors immediately; moreover, such an attractor can attract every bounded subset of L-2(Omega) with the Lp+delta-norm for any delta is an element of [0, +infinity).
引用
收藏
页码:212 / 224
页数:13
相关论文
共 50 条