A linear-time algorithm for 7-coloring 1-planar graphs

被引:0
|
作者
Chen, ZZ [1 ]
Kouno, M [1 ]
机构
[1] Tokyo Denki Univ, Dept Math Sci, Hatoyama, Saitama 3500394, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A graph G is I-planar if it can be embedded in the plane in such a way that each edge crosses at most one other edge. Borodin showed that 1-planar graphs are 6-colorable, but his proof only leads to a complicated polynomial (but nonlinear) time algorithm. This paper presents a linear-time algorithm for 7-coloring 1-planar graphs (that are already embedded in the plane). The main difficulty in the design of our algorithm comes from the fact that the class of I-planar graphs is not closed under the operation of edge contraction. This difficulty is overcome by a structure lemma that may find useful in other problems on 1-planar graphs. This paper also shows that it is NP-complete to decide whether a given I-planar graph is 4-colorable. The complexity of the problem of deciding whether a,given I-planar graph is 5-colorable is still unknown.
引用
收藏
页码:348 / 357
页数:10
相关论文
共 50 条
  • [1] A Linear-Time Algorithm for 7-Coloring 1-Plane Graphs
    Zhi-Zhong Chen
    Mitsuharu Kouno
    [J]. Algorithmica, 2005, 43 : 147 - 177
  • [2] A linear-time algorithm for 7-coloring 1-plane graphs
    Chen, ZZ
    Kouno, M
    [J]. ALGORITHMICA, 2005, 43 (03) : 147 - 177
  • [3] A linear-time algorithm for clique-coloring planar graphs
    Liang, Zuosong
    Shan, Erfang
    Xing, Huiyu
    Bai, Chunsong
    [J]. OPERATIONS RESEARCH LETTERS, 2019, 47 (04) : 241 - 243
  • [4] Acyclic list 7-coloring of planar graphs
    Borodin, OV
    Flaass, DGF
    Kostochka, AV
    Raspaud, A
    Sopena, E
    [J]. JOURNAL OF GRAPH THEORY, 2002, 40 (02) : 83 - 90
  • [5] A Linear-Time Algorithm for 4-Coloring Some Classes of Planar Graphs
    Liang, Zuosong
    Wei, Huandi
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [6] ON LINEAR-TIME ALGORITHMS FOR 5-COLORING PLANAR GRAPHS
    FREDERICKSON, GN
    [J]. INFORMATION PROCESSING LETTERS, 1984, 19 (05) : 219 - 224
  • [7] Local 7-coloring for planar subgraphs of unit disk graphs
    Czyzowicz, J.
    Dobrev, S.
    Gonzalez-Aguilar, H.
    Kralovic, R.
    Kranakis, E.
    Opatrny, J.
    Stacho, L.
    Urrutia, J.
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2008, 4978 : 170 - +
  • [8] Local 7-coloring for planar subgraphs of unit disk graphs
    Czyzowicz, J.
    Dobrev, S.
    Gonzalez-Aguilar, H.
    Kralovic, R.
    Kranakis, E.
    Opatrny, J.
    Stacho, L.
    Urrutia, J.
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (18) : 1696 - 1704
  • [9] Dynamic list coloring of 1-planar graphs
    Zhang, Xin
    Li, Yan
    [J]. DISCRETE MATHEMATICS, 2021, 344 (05)
  • [10] Note on improper coloring of 1-planar graphs
    Yanan Chu
    Lei Sun
    Jun Yue
    [J]. Czechoslovak Mathematical Journal, 2019, 69 : 955 - 968