An Efficient Feature Selection Method Using Hybrid Particle Swarm Optimization with Genetic Algorithm

被引:1
|
作者
Narayanan, Arya [1 ]
Praveen, A. N. [1 ]
机构
[1] Govt Engn Coll Idukki, Dept Informat Technol, Idukki, Kerala, India
关键词
Feature selection; Particle swarm optimization; Genetic algorithm; Big data analytics;
D O I
10.1007/978-3-030-03146-6_133
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The data mining applications over big data is a challenging task. The main issues of the big data are velocity problem, variety problem and the volume problem. We want to handle large amount of data in the case of big data such as medical data, sensor data, telephonic record data etc. In some cases, the classifier is not good enough and do not work well for data which have many features. Too many features are affects the effectiveness of classifier, some features may be redundant. Too many features goes through the classifier, which will cause increasing the workload of the classifier. In order to solve this problem, we need some optimized feature selection method. In this work proposed an algorithm called Hybrid Particle Swarm Optimization with Genetic Algorithm (HPSOGA). This is a very good feature selection method to find the optimal features for the classification to overcome the draw backs of the classification model. The efficiency of the classification model can be done using this feature selection algorithm through selecting the relevant and the significant features. So it help to obtain improved accuracy within the reasonable processing time of the classifier.
引用
下载
收藏
页码:1148 / 1155
页数:8
相关论文
共 50 条
  • [1] Gene selection using hybrid particle swarm optimization and genetic algorithm
    Shutao Li
    Xixian Wu
    Mingkui Tan
    Soft Computing, 2008, 12 : 1039 - 1048
  • [2] Gene selection using hybrid particle swarm optimization and genetic algorithm
    Li, Shutao
    Wu, Xixian
    Tan, Mingkui
    SOFT COMPUTING, 2008, 12 (11) : 1039 - 1048
  • [3] Hybrid particle swarm optimization algorithm for fault feature selection
    Taiyuan University of Technology, Taiyuan 030024, China
    不详
    Xitong Fangzhen Xuebao / Journal of System Simulation, 2008, 20 (15): : 4041 - 4044
  • [4] An hybrid particle swarm optimization with crow search algorithm for feature selection
    Adamu, Abdulhameed
    Abdullahi, Mohammed
    Junaidu, Sahalu Balarabe
    Hassan, Ibrahim Hayatu
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6
  • [5] Hybrid particle swarm optimization algorithm for text feature selection problems
    Nachaoui, Mourad
    Lakouam, Issam
    Hafidi, Imad
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (13): : 7471 - 7489
  • [6] Hybrid particle swarm optimization algorithm for text feature selection problems
    Mourad Nachaoui
    Issam Lakouam
    Imad Hafidi
    Neural Computing and Applications, 2024, 36 : 7471 - 7489
  • [7] Feature Selection Based on Hybridization of Genetic Algorithm and Particle Swarm Optimization
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (02) : 309 - 313
  • [8] The feature selection method for SVM with discrete particle swarm optimization algorithm
    Peng Xiyuan
    Wu Hongxing
    Peng Yu
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 2523 - 2526
  • [9] Efficient Feature Selection using Particle Swarm Optimization: A hybrid filters-wrapper Approach
    Koumi, Fatima
    Aldasht, Mohammed
    Tamimi, Hashem
    2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2019, : 122 - 127
  • [10] Efficient Feature Selection Algorithm Based on Particle Swarm Optimization With Learning Memory
    Wei, Bo
    Zhang, Wensheng
    Xia, Xuewen
    Zhang, Yinglong
    Yu, Fei
    Zhu, Zhiliang
    IEEE ACCESS, 2019, 7 : 166066 - 166078