HYPERSPECTRAL CLASSIFICATION VIA SPATIAL CONTEXT EXPLORATION WITH MULTI-SCALE CNN

被引:0
|
作者
Tian, Zhongqi [1 ]
Ji, Jingyu [1 ]
Mei, Shaohui [1 ]
Hou, Junhui [2 ]
Wan, Shuai [1 ]
Du, Qian [3 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Shaanxi, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Convolutional neural network; hyperspectral; classification; spatial context;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spatial context has shown to be very useful in hyperspectral image processing. Existing convolutional neural network (CNN)-based methods for hyperspectral classification explore spatial context by single-scale convolution kernels in 2D or 3D shapes. However, such single-scale convolution may not be capable to explore the complex spatial context in a hyperspectral image. In this paper, we propose a multi-scale CNN, MS-CNN to explore the spatial context in different extents, in which adaptive spatial neighborhood convolution kernels are used to simultaneously extract multiple spectral-spatial features from spatial context of pixels. These features obtained by different spatial kernels are then concatenated and fused for further feature extraction and classification. Experimental results show that the proposed adaptive spatial neighborhood convolution are more effective to explore spatial context than traditional single-scale spatial convolution and the performance of the proposed MS-CNN outperforms several state-of-art CNNs for classification of hyperspectral images.
引用
收藏
页码:2563 / 2566
页数:4
相关论文
共 50 条
  • [1] Spatial Feature Extraction for Hyperspectral Image Classification Based on Multi-scale CNN
    Song, Haifeng
    Yang, Weiwei
    Journal of Computers (Taiwan), 2020, 31 (04) : 174 - 186
  • [2] Multi-scale superpixel spectral-spatial classification of hyperspectral images
    Li, Shanshan
    Ni, Li
    Jia, Xiuping
    Gao, Lianru
    Zhang, Bing
    Peng, Man
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (20) : 4905 - 4922
  • [3] HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE RESIDUAL ATTENTION NETWORK
    Xie, Wen
    Wu, Qinzhe
    Ren, Wen
    Zhang, Yuzhuo
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7649 - 7652
  • [4] Increasing the classification efficiency of hyperspectral images due to multi-scale spatial processing
    Borzov, S. M.
    Potaturkin, O., I
    COMPUTER OPTICS, 2020, 44 (06) : 937 - +
  • [5] A Recurrent Attention Multi-Scale CNN-LSTM Network Based on Hyperspectral Image Classification
    Zhang, Xinyue
    Zuo, Jing
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (11)
  • [6] HYPERSPECTRAL IMAGE CLASSIFICATION VIA DOUBLE-BRANCH MULTI-SCALE SPECTRAL-SPATIAL CONVOLUTION NETWORK
    Liang, Lianhui
    Zhang, Shaoquan
    Li, Jun
    Cui, Zhi
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3588 - 3591
  • [7] A multi-scale multi-channel CNN introducing a channel-spatial attention mechanism hyperspectral remote sensing image classification method
    Zhao, Ru
    Zhang, Chaozhu
    Xue, Dan
    EUROPEAN JOURNAL OF REMOTE SENSING, 2024, 57 (01)
  • [8] HYPERSPECTRAL IMAGE CLASSIFICATION VIA MULTI-SCALE ENCODER-DECODER NETWORK
    Ma, Jingjing
    Wu, Linlin
    Tang, Xu
    Zhang, Xiangrong
    Zhu, Cheng
    Ma, Junyong
    Jiao, Licheng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1283 - 1286
  • [9] Multi-level and Multi-scale Spatial and Spectral Fusion CNN for Hyperspectral Image Super-resolution
    Han, Xian-Hua
    Zheng, YinQiang
    Chen, Yen-Wei
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 4330 - 4339
  • [10] Interactive multi-scale exploration for volume classification
    Eric B. Lum
    James Shearer
    Kwan-Liu Ma
    The Visual Computer, 2006, 22 : 622 - 630