Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations

被引:15
|
作者
Zheng, Xiangcheng [1 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, 1523 Greene St, Columbia, SC 29208 USA
来源
基金
美国国家科学基金会;
关键词
Variable-order fractional diffusion equation; Wellposedness; Regularity; ANOMALOUS DIFFUSION;
D O I
10.1007/s00033-020-1253-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the wellposedness of history-state-based variable-order linear time-fractional diffusion equations in multiple space dimensions. We also prove that the regularity of their solutions depends on the behavior of the variable order at the initial time t = 0, in addition to the usual smoothness assumptions. More precisely, we prove that their solutions have full regularity (i.e., the solutions can achieve high-order smoothness under high-order regularity assumptions of the data) as their integer-order analogs if the variable order has an integer limit at t = 0 or exhibits singular behaviors at t = 0 like in the case of the constant-order time-fractional diffusion equations if the variable order has a non-integer value at t = 0.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations
    Xiangcheng Zheng
    Hong Wang
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [2] Wellposedness and regularity of the variable-order time-fractional diffusion equations
    Wang, Hong
    Zheng, Xiangcheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1778 - 1802
  • [3] Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations
    Zheng, Xiangcheng
    Cheng, Jin
    Wang, Hong
    INVERSE PROBLEMS, 2019, 35 (12)
  • [4] A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations
    Liu, Huan
    Cheng, Aijie
    Wang, Hong
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (01)
  • [5] A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations
    Huan Liu
    Aijie Cheng
    Hong Wang
    Journal of Scientific Computing, 2020, 85
  • [6] A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations
    Fang, Zhi-Wei
    Sun, Hai-Wei
    Wang, Hong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1443 - 1458
  • [7] Wellposedness and regularity of a variable-order space-time fractional diffusion equation
    Zheng, Xiangcheng
    Wang, Hong
    ANALYSIS AND APPLICATIONS, 2020, 18 (04) : 615 - 638
  • [8] A robust scheme for Caputo variable-order time-fractional diffusion-type equations
    Khadijeh Sadri
    Kamyar Hosseini
    Dumitru Baleanu
    Soheil Salahshour
    Evren Hinçal
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 5747 - 5764
  • [9] Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
    Jia-Li Zhang
    Zhi-Wei Fang
    Hai-Wei Sun
    Journal of Applied Mathematics and Computing, 2022, 68 : 323 - 347
  • [10] A robust scheme for Caputo variable-order time-fractional diffusion-type equations
    Sadri, Khadijeh
    Hosseini, Kamyar
    Baleanu, Dumitru
    Salahshour, Soheil
    Hincal, Evren
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (12) : 5747 - 5764