Regulation of serine (Ser)-31 and Ser40 tyrosine hydroxylase phosphorylation during morphine withdrawal in the hypothalamic paraventricular nucleus and nucleus tractus solitarius-A2 cell group:: Role of ERK1/2

被引:38
|
作者
Nunez, Cristina [1 ]
Laorden, M. Luisa [1 ]
Milanes, M. Victoria [1 ]
机构
[1] Univ Sch Med, Dept Pharmacol, Murcia 30100, Spain
关键词
D O I
10.1210/en.2007-0510
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Our previous studies have shown that naloxone-induced morphine withdrawal increases the hypothalamic-pituitary-adrenocortical (HPA) axis activity, which is dependent on a hyperactivity of noradrenergic pathways [nucleus tractus solitarius (NTS) A(2)] innervating the hypothalamic paraventricular nucleus (PVN). Short-term regulation of catecholamine biosynthesis occurs through phosphorylation of tyrosine hydroxylase (TH), which enhances enzymatic activity. In the present study, the effect of morphine withdrawal on site-specific TH phosphorylation in the PVN and NTS-A2 was determined by quantitative blot immunolabeling and immunohistochemistry using phosphorylation state-specific antibodies. We show that naloxone-induced morphine withdrawal phosphorylates TH at Serine (Ser)-31 but not Ser40 in PVN and NTS-A(2), which is associated with both an increase in total TH immunoreactivity in NTS-A2 and an enhanced TH activity in the PVN. In addition, we demonstrated that TH neurons phosphorylated at Ser31 coexpress c-Fos in NTS-A2. We then tested whether pharmacological inhibition of ERK activation by ERK kinase contributes to morphine withdrawal-induced phosphorylation of TH at Ser31. We show that the ability of morphine withdrawal to stimulate phosphorylation at this seryl residue is reduced by SL327, an inhibitor of ERK1/2 activation. These results suggest that morphine withdrawal increases noradrenaline turnover in the PVN, at least in part, via ERK1/2-dependent phosphorylation of TH at Ser31.
引用
收藏
页码:5780 / 5793
页数:14
相关论文
共 5 条