Impact of molecular structure on secondary organic aerosol formation from aromatic hydrocarbon photooxidation under low-NOx conditions

被引:31
|
作者
Li, Lijie [1 ,2 ]
Tang, Ping [1 ,2 ]
Nakao, Shunsuke [1 ,2 ,3 ]
Cocker, David R., III [1 ,2 ]
机构
[1] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92507 USA
[2] Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA
[3] Clarkson Univ, Dept Chem & Biomol Engn, Potsdam, NY 13699 USA
基金
美国国家科学基金会;
关键词
GAS-PHASE; M-XYLENE; HIGH-RESOLUTION; HETEROGENEOUS REACTIONS; ELEMENTAL COMPOSITION; PARTICULATE MATTER; MOTOR-VEHICLES; AIR-POLLUTION; SOA FORMATION; OXIDATION;
D O I
10.5194/acp-16-10793-2016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The molecular structure of volatile organic compounds determines their oxidation pathway, directly impacting secondary organic aerosol (SOA) formation. This study comprehensively investigates the impact of molecular structure on SOA formation from the photooxidation of 12 different eight-to nine-carbon aromatic hydrocarbons under low-NOx conditions. The effects of the alkyl substitute number, location, carbon chain length and branching structure on the photooxidation of aromatic hydrocarbons are demonstrated by analyzing SOA yield, chemical composition and physical properties. Aromatic hydrocarbons, categorized into five groups, show a yield order of ortho (o-xylene and o-ethyltoluene) > one substitute (ethylbenzene, propylbenzene and isopropylbenzene) > meta (m-xylene and m-ethyltoluene) > three substitute (trimethylbenzenes) > para (p-xylene and p-ethyltoluene). SOA yields of aromatic hydrocarbon photooxidation do not monotonically decrease when increasing alkyl substitute number. The ortho position promotes SOA formation while the para position suppresses aromatic oxidation and SOA formation. Observed SOA chemical composition and volatility confirm that higher yield is associated with further oxidation. SOA chemical composition also suggests that aromatic oxidation increases with increasing alkyl substitute chain length and branching structure. Further, carbon dilution conjecture developed by Li et al. (2016) is extended in this study to serve as a standard method to determine the extent of oxidation of an alkyl-substituted aromatic hydrocarbon.
引用
收藏
页码:10793 / 10808
页数:16
相关论文
共 50 条
  • [1] Formation of secondary organic aerosol marker compounds from the photooxidation of isoprene and isoprene-derived alkene diols under low-NOx conditions
    Wang, Wu
    Iinuma, Yoshiteru
    Kahnt, Ariane
    Ryabtsova, Oxana
    Mutzel, Anke
    Vermeylen, Reinhilde
    Van der Veken, Pieter
    Maenhaut, Willy
    Herrmann, Hartmut
    Claeys, Magda
    [J]. FARADAY DISCUSSIONS, 2013, 165 : 261 - 272
  • [2] Oxygenated organic molecules produced by low-NOx photooxidation of aromatic compounds: contributions to secondary organic aerosol and steric hindrance
    Cheng, Xi
    Li, Yong Jie
    Zheng, Yan
    Liao, Keren
    Koenig, Theodore K.
    Ge, Yanli
    Zhu, Tong
    Ye, Chunxiang
    Qiu, Xinghua
    Chen, Qi
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2024, 24 (04) : 2099 - 2112
  • [3] Secondary Organic Aerosol Formation from Low-NOx Photooxidation of Dodecane: Evolution of Multigeneration Gas-Phase Chemistry and Aerosol Composition
    Yee, Lindsay D.
    Craven, Jill S.
    Loza, Christine L.
    Schilling, Katherine A.
    Ng, Nga Lee
    Canagaratna, Manjula R.
    Ziemann, Paul J.
    Flagan, Richard C.
    Seinfeld, John H.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (24): : 6211 - 6230
  • [4] Impact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation
    Sarrafzadeh, Mehrnaz
    Wildt, Juergen
    Pullinen, Iida
    Springer, Monika
    Kleist, Einhard
    Tillmann, Ralf
    Schmitt, Sebastian H.
    Wu, Cheng
    Mentel, Thomas F.
    Zhao, Defeng
    Hastie, Donald R.
    Kiendler-Scharr, Astrid
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (17) : 11237 - 11248
  • [5] Contribution of methyl group to secondary organic aerosol formation from aromatic hydrocarbon photooxidation
    Li, Lijie
    Qi, Li
    Cocker, David R., III
    [J]. ATMOSPHERIC ENVIRONMENT, 2017, 151 : 133 - 139
  • [6] Role of methyl group number on SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions
    Li, L.
    Tang, P.
    Nakao, S.
    Chen, C. -L.
    Cocker, D. R., III
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (04) : 2255 - 2272
  • [7] Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation
    Song, C
    Na, KS
    Cocker, DR
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (09) : 3143 - 3149
  • [8] Simulating the formation of secondary organic aerosol from the photooxidation of aromatic hydrocarbons
    Johnson, D
    Jenkin, ME
    Wirtz, K
    Martin-Reviejo, M
    [J]. ENVIRONMENTAL CHEMISTRY, 2005, 2 (01) : 35 - 48
  • [9] Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition
    Forstner, HJL
    Flagan, RC
    Seinfeld, JH
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (05) : 1345 - 1358
  • [10] Effect of NOx and RH on the secondary organic aerosol formation from toluene photooxidation
    Liu, Shijie
    Liu, Xiaodi
    Wang, Yiqian
    Zhang, Si
    Wu, Can
    Du, Wei
    Wang, Gehui
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCES, 2022, 114 : 1 - 9