Matrix factorization and minimal state space realization in the max-plus algebra

被引:0
|
作者
De Schutter, B
De Moor, B
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The topics of this paper are matrix factorizations and the minimal state space realization problem in the max-plus algebra, which is one of the modeling frameworks that can be used to model discrete event systems. We present a heuristic algorithm to compute a factorization of a matrix in the max-plus algebra. Next we use this algorithm to determine the minimal system order (and to construct a minimal state space realization) of a max-linear time-invariant discrete event system.
引用
收藏
页码:3136 / 3140
页数:5
相关论文
共 50 条
  • [1] On the boolean minimal realization problem in the max-plus algebra
    De Schutter, Bart
    Blondel, Vincent
    de Vries, Remco
    De Moor, Bart
    Systems and Control Letters, 1998, 35 (02): : 69 - 78
  • [2] On the boolean minimal realization problem in the max-plus algebra
    De Schutter, B
    Blondel, V
    de Vries, R
    De Moor, B
    SYSTEMS & CONTROL LETTERS, 1998, 35 (02) : 69 - 78
  • [3] Matrix roots in the max-plus algebra
    Jones, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 631 : 10 - 34
  • [4] Generalized matrix period in max-plus algebra
    Molnárová, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 (1-3) : 345 - 366
  • [5] Linear matrix period in max-plus algebra
    Gavalec, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 307 (1-3) : 167 - 182
  • [6] Computing an eigenvector of a Monge matrix in max-plus algebra
    Gavalec, Martin
    Plavka, Jan
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 63 (03) : 543 - 551
  • [7] Structure of the eigenspace of a Monge matrix in max-plus algebra
    Gavalec, Martin
    Plavka, Jan
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (05) : 596 - 606
  • [8] Computing an Eigenvector of a Monge Matrix in Max-Plus Algebra
    Martin Gavalec
    Ján Plavka
    Mathematical Methods of Operations Research, 2006, 63 : 543 - 551
  • [9] Extremality criteria for the supereigenvector space in max-plus algebra
    Sergeev, Sergei
    Wang, Hui-li
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 653 : 116 - 134
  • [10] Max-plus: A network algebra
    Daniel-Cavalcante, Mabia
    Magalhaes, Mauricio F.
    Santos-Mendes, Rafael
    POSITIVE SYSTEMS, PROCEEDINGS, 2006, 341 : 375 - 382