A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters

被引:31
|
作者
Askarzadeh, Alireza [1 ]
Rezazadeh, Alireza [1 ]
机构
[1] Shahid Beheshti Univ, Fac Elect & Comp Engn, GC, Tehran 1983963113, Iran
关键词
Proton exchange membrane fuel cell stack model; Parameter optimization; Artificial bee swarm optimization algorithm; NUMERICAL FUNCTION OPTIMIZATION; MANAGEMENT; WATER;
D O I
10.1631/jzus.C1000355
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An appropriate mathematical model can help researchers to simulate, evaluate, and control a proton exchange membrane fuel cell (PEMFC) stack system. Because a PEMFC is a nonlinear and strongly coupled system, many assumptions and approximations are considered during modeling. Therefore, some differences are found between model results and the real performance of PEMFCs. To increase the precision of the models so that they can describe better the actual performance, optimization of PEMFC model parameters is essential. In this paper, an artificial bee swarm optimization algorithm, called ABSO, is proposed for optimizing the parameters of a steady-state PEMFC stack model suitable for electrical engineering applications. For studying the usefulness of the proposed algorithm, ABSO-based results are compared with the results from a genetic algorithm (GA) and particle swarm optimization (PSO). The results show that the ABSO algorithm outperforms the other algorithms.
引用
收藏
页码:638 / 646
页数:9
相关论文
共 50 条
  • [1] A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters
    Alireza Askarzadeh
    Alireza Rezazadeh
    Journal of Zhejiang University SCIENCE C, 2011, 12 : 638 - 646
  • [2] A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters
    Alireza ASKARZADEH
    Alireza REZAZADEH
    Frontiers of Information Technology & Electronic Engineering, 2011, (08) : 638 - 646
  • [3] Optimal estimation of proton exchange membrane fuel cell model parameters based on an improved chicken swarm optimization algorithm
    Wang, Tongying
    Huang, Haozhong
    Li, Xuan
    Guo, Xiaoyu
    Liu, Mingxin
    Lei, Han
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2023, 20 (09) : 946 - 965
  • [4] Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
    Zhang, Wei
    Wang, Ning
    Yang, Shipin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) : 5796 - 5806
  • [5] Parameters Estimation of Proton Exchange Membrane Fuel Cell Model Based on an Improved Walrus Optimization Algorithm
    Alqahtani, Ayedh H.
    Hasanien, Hany M.
    Alharbi, Mohammed
    Chuanyu, Sun
    IEEE ACCESS, 2024, 12 : 74979 - 74992
  • [6] An improved chicken swarm optimization algorithm for extracting the optimal parameters of proton exchange membrane fuel cells
    Ayvaz, Alisan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (11) : 15081 - 15098
  • [7] Optimization of key parameters in the proton exchange membrane fuel cell
    Lin, Hung-Hsiang
    Cheng, Chin-Hsiang
    Soong, Chyi-Yeou
    Chen, Falin
    Yan, Wei-Mon
    JOURNAL OF POWER SOURCES, 2006, 162 (01) : 246 - 254
  • [8] Model parameters estimation of a proton exchange membrane fuel cell using improved version of Archimedes optimization algorithm
    Yao, Bin
    Hayati, Hosein
    ENERGY REPORTS, 2021, 7 : 5700 - 5709
  • [9] Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization
    Ye, Meiyinq
    Wang, Xiaodong
    Xu, Yousheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 981 - 989
  • [10] Artificial bee swarm optimization algorithm for parameters identification of solar cell models
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    APPLIED ENERGY, 2013, 102 : 943 - 949