Fractional and composite excitations of antiferromagnetic quantum spin trimer chains

被引:15
|
作者
Cheng, Jun-Qing [1 ]
Li, Jun [1 ]
Xiong, Zijian [1 ,2 ]
Wu, Han-Qing [1 ]
Sandvik, Anders W. [3 ,4 ,5 ]
Yao, Dao-Xin [1 ]
机构
[1] Sun Yat Sen Univ, Ctr Neutron Sci & Technol, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[2] Chongqing Univ, Dept Phys, Chongqing 401331, Peoples R China
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[5] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
关键词
RENORMALIZATION-GROUP; ISING-MODEL; DYNAMICS; LATTICE; FIELD; HEAT; CA;
D O I
10.1038/s41535-021-00416-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using quantum Monte Carlo, exact diagonalization, and perturbation theory, we study the spectrum of the S = 1/2 antiferromagnetic Heisenberg trimer chain by varying the ratio g = J(2)/J(1) of the intertrimer and intratrimer coupling strengths. The doublet ground states of trimers form effective interacting S = 1/2 degrees of freedom described by a Heisenberg chain. Therefore, the conventional two-spinon continuum of width proportional to J(1) when g = 1 evolves into to a similar continuum of width proportional to J(2) when g -> 0. The intermediate-energy and high-energy modes are termed doublons and quartons which fractionalize with increasing g to form the conventional spinon continuum. In particular, at g approximate to 0.716, the gap between the low-energy spinon branch and the high-energy band with mixed doublons, quartons, and spinons closes. These features should be observable in inelastic neutron scattering experiments if a quasi-one-dimensional quantum magnet with the linear trimer structure and J(2) < J(1) can be identified. Our results may open a window for exploring the high-energy fractional excitations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fractional and composite excitations of antiferromagnetic quantum spin trimer chains
    Jun-Qing Cheng
    Jun Li
    Zijian Xiong
    Han-Qing Wu
    Anders W. Sandvik
    Dao-Xin Yao
    [J]. npj Quantum Materials, 7
  • [2] Quantum entanglement in trimer spin-1/2 Heisenberg chains with antiferromagnetic coupling
    Cima O.M.D.
    Franco D.H.T.
    da Silva S.L.L.
    [J]. Quantum Studies: Mathematics and Foundations, 2016, 3 (1) : 57 - 63
  • [3] RANDOM ANTIFERROMAGNETIC QUANTUM SPIN CHAINS
    FISHER, DS
    [J]. PHYSICAL REVIEW B, 1994, 50 (06): : 3799 - 3821
  • [4] Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain
    Mourigal, Martin
    Enderle, Mechthild
    Kloepperpieper, Axel
    Caux, Jean-Sebastien
    Stunault, Anne
    Ronnow, Henrik M.
    [J]. NATURE PHYSICS, 2013, 9 (07) : 435 - 441
  • [5] Fractional spinon excitations in the quantum heisenberg antiferromagnetic chain
    Mourigal M.
    Enderle M.
    Klöpperpieper A.
    Caux J.-S.
    Stunault A.
    Rønnow H.M.
    [J]. Nature Physics, 2013, 9 (7) : 435 - 441
  • [6] Weakly coupled antiferromagnetic quantum spin chains
    Wang, ZQ
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (01) : 126 - 129
  • [7] Metamagnetism of antiferromagnetic XXZ quantum spin chains
    Sakai, T
    Takahashi, M
    [J]. PHYSICAL REVIEW B, 1999, 60 (10): : 7295 - 7298
  • [8] QUANTUM SPIN CHAINS WITH COMPOSITE SPIN
    SOLYOM, J
    TIMONEN, J
    [J]. JOURNAL DE PHYSIQUE, 1988, 49 (C-8): : 1377 - 1378
  • [9] EDGE STATES IN ANTIFERROMAGNETIC QUANTUM SPIN CHAINS
    NG, TK
    [J]. PHYSICAL REVIEW B, 1994, 50 (01): : 555 - 558
  • [10] Observation of fractional edge excitations in nanographene spin chains
    Shantanu Mishra
    Gonçalo Catarina
    Fupeng Wu
    Ricardo Ortiz
    David Jacob
    Kristjan Eimre
    Ji Ma
    Carlo A. Pignedoli
    Xinliang Feng
    Pascal Ruffieux
    Joaquín Fernández-Rossier
    Roman Fasel
    [J]. Nature, 2021, 598 : 287 - 292