Symmetries of quantum graphs and the inverse scattering problem

被引:52
|
作者
Boman, J [1 ]
Kurasov, P
机构
[1] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
[2] Lund Inst Technol, Dept Math, S-22100 Lund, Sweden
[3] St Petersburg Univ, Dept Phys, St Petersburg 198904, Russia
关键词
quantum graph; schrodinger operator; inverse scattering problem;
D O I
10.1016/j.aam.2004.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Schrodinger equation on a graph together with a set of self-adjoint boundary conditions at the vertices determine a quantum graph. If the graph has one or more infinite edges one can associate a scattering matrix to the quantum graph. It is proved that if such a graph has internal symmetries then the boundary conditions, and hence the self-adjoint operator describing the quantum system, in general cannot be reconstructed from the scattering matrix. In addition it is shown that if the Schrodinger operator possesses internal symmetry then there exists a different quantum graph associated with the same scattering matrix. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:58 / 70
页数:13
相关论文
共 50 条
  • [1] Inverse scattering problem of quantum graphs
    Cheon, Taksu
    Turek, Ondrej
    INTERNATIONAL SYMPOSIUM ON NEW FACES OF ATOMIC NUCLEI: FESTSCHRIFT IN HONOUR OF AKITO ARIMA'S 80TH BIRTHDAY, 2011, 1355
  • [2] The relativistic inverse scattering problem for quantum graphs
    Sabirov, K. K.
    Sobirov, Z. A.
    Karpova, O. V.
    Saidov, A. A.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (02): : 192 - 197
  • [3] Inverse scattering problem on quantum graphs in optical tomography technology
    Bondarenko, AN
    Dedok, VA
    KORUS 2003: 7TH KOREA-RUSSIA INTERNATIONAL SYMPOSIUM ON SCIENCE AND TECHNOLOGY, VOL 3, PROCEEDINGS: NATURAL SCIENCE, 2003, : 105 - 110
  • [4] On the inverse scattering problem on branching graphs
    Kurasov, P
    Stenberg, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (01): : 101 - 121
  • [5] On the quantum inverse scattering problem
    Maillet, JM
    Terras, V
    NUCLEAR PHYSICS B, 2000, 575 (03) : 627 - 644
  • [6] Inverse spectral problem for quantum graphs
    Kurasov, P
    Nowaczyk, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (22): : 4901 - 4915
  • [7] INVERSE PROBLEM IN QUANTUM THEORY OF SCATTERING
    FADDEYEV, LD
    SECKLER, B
    JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (01) : 72 - &
  • [8] On the Inverse Problem for Quantum Graphs with One Cycle
    Kurasov, P.
    ACTA PHYSICA POLONICA A, 2009, 116 (05) : 765 - 771
  • [9] A partial inverse problem for quantum graphs with a loop
    Guan, Sheng-Yu
    Yang, Chuan-Fu
    Wu, Dong-Jie
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (04): : 577 - 585
  • [10] QUANTUM INVERSE SCATTERING PROBLEM AS A CAUCHY-PROBLEM
    ABRAMOV, DI
    JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 97 (02) : 516 - 534