Automatic estimation of asymmetry for gradient-based alignment of noisy images on Lie group

被引:1
|
作者
Authesserre, Jean-Baptiste [1 ]
Megret, Remi [1 ]
Berthoumieu, Yannick [1 ]
机构
[1] Univ Bordeaux, Signal & Image Proc Grp, IMS, CNRS,UMR 5218, F-33405 Talence, France
关键词
Asymmetric image alignment; Noisy images; Parametric motion estimation; Gradient methods; Lie groups; TRACKING;
D O I
10.1016/j.patrec.2011.04.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many parametric image alignment approaches assume equality of the images to register up to motion compensation. In presence of noise this assumption does not hold. In particular, for gradient-based approaches, which rely on the optimization of an error functional with gradient descent methods, the performances depend on the amount of noise in each image. We propose in this paper to use the Asymmetric Composition on Lie groups (ACL) formulation of the alignment problem to improve the robustness in presence of asymmetric levels of noise. The ACL formulation, generalizing state-of-the-art gradient-based image alignment, introduces a parameter to weight the influence of the images during the optimization. Three new methods are presented to estimate this asymmetry parameter: one supervised (MVACL) and two fully automatic (AACL and GACL). Theoretical results and experimental validation show how the new algorithms improve robustness in presence of noise. Finally, we illustrate the interest of the new approaches for object tracking under low-light conditions. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1480 / 1492
页数:13
相关论文
共 50 条
  • [1] Bidirectional Composition on Lie Groups for Gradient-Based Image Alignment
    Megret, Remi
    Authesserre, Jean-Baptiste
    Berthoumieu, Yannick
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) : 2369 - 2381
  • [2] Adaptive gradient-based block compressive sensing with sparsity for noisy images
    Hui-Huang Zhao
    Paul L. Rosin
    Yu-Kun Lai
    Jin-Hua Zheng
    Yao-Nan Wang
    [J]. Multimedia Tools and Applications, 2020, 79 : 14825 - 14847
  • [3] Adaptive gradient-based block compressive sensing with sparsity for noisy images
    Zhao, Hui-Huang
    Rosin, Paul L.
    Lai, Yu-Kun
    Zheng, Jin-Hua
    Wang, Yao-Nan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) : 14825 - 14847
  • [4] Multiresolution gradient-based edge detection in noisy images using domain filters
    Lee, YW
    Kozaitis, SP
    [J]. OPTICAL ENGINEERING, 2000, 39 (09) : 2405 - 2412
  • [5] Gradient-based estimation of Manning's friction coefficient from noisy data
    Calo, Victor M.
    Collier, Nathan
    Gehre, Matthias
    Jin, Bangti
    Radwan, Hany
    Santillana, Mauricio
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 238 : 1 - 13
  • [6] ASYMMETRIC GRADIENT-BASED IMAGE ALIGNMENT
    Autheserre, Jean-Baptiste
    Megret, Remi
    Berthoumieu, Yannick
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 981 - 984
  • [7] FFT-BASED ESTIMATION OF LARGE MOTIONS IN IMAGES: A ROBUST GRADIENT-BASED APPROACH
    Tzimiropoulos, Georgios
    Argyriou, Vasileios
    Stathaki, Tania
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 969 - +
  • [8] Gradient-based value mapping for pseudocolor images
    Visvanathan, Arvind
    Reichenbach, Stephen E.
    Tho, Qingping
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2007, 16 (03)
  • [9] Gradient-based polyhedral segmentation for range images
    Li, ST
    Zhao, DM
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (12) : 2069 - 2077
  • [10] Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal
    Sedova, Anastasiia
    Zellinger, Lena
    Roth, Benjamin
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 237 - 253