WHITEHEAD DOUBLE AND MILNOR INVARIANTS

被引:0
|
作者
Meilhan, Jean-Baptiste [1 ]
Yasuhara, Akira [2 ]
机构
[1] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
[2] Tokyo Gakugei Univ, Dept Math, Tokyo 1848501, Japan
基金
日本学术振兴会;
关键词
SELF DELTA-EQUIVALENCE; LINK HOMOTOPY; MOVE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the operation of Whitehead double on a component of a link and study the behavior of Milnor invariants under this operation. We show that this operation turns a link whose Milnor invariants of length <= k are all zero into a link with vanishing Milnor invariants of length <= 2k + 1. and we provide formulae for the first non-vanishing ones. As a consequence, we obtain statements relating the notions of link-homotopy and self Delta-equivalence via the Whitehead double operation. By using our result, we show that a Brunnian link L is link-homotopic to the unlink if and only if the link L with a single component Whitehead doubled is self Delta-equivalent to the unlink.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 50 条
  • [1] Weight systems for Milnor invariants
    Mellor, Blake
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2008, 17 (02) : 213 - 230
  • [2] Milnor invariants of sorting networks
    Arnold, Maxim
    Kondor, Christian
    [J]. INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (01): : 39 - 54
  • [3] Milnor invariants for spatial graphs
    Fleming, Thomas
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (12) : 1297 - 1305
  • [4] Milnor invariants of covering links
    Kobayashi, Natsuka
    Wada, Kodai
    Yasuhara, Akira
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2017, 224 : 60 - 72
  • [5] Milnor invariants of clover links
    Wada, Kodai
    Yasuhara, Akira
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (13)
  • [6] Milnor invariants and the HOMFLYPT Polynomial
    Meilhan, Jean-Baptiste
    Yasuhara, Akira
    [J]. GEOMETRY & TOPOLOGY, 2012, 16 (02) : 889 - 917
  • [7] MILNOR-HILTON THEOREM AND WHITEHEAD PRODUCTS
    SPENCER, CB
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 4 (DEC): : 291 - &
  • [8] Finite type invariants and Milnor invariants for Brunnian links
    Habiro, Kazuo
    Meilhan, Jean-Baptiste
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (06) : 747 - 766
  • [9] Milnor invariants of length 2k+2 for links with vanishing Milnor invariants of length ≤ k
    Kotorii, Yuka
    Yasuhara, Akira
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2015, 184 : 87 - 100
  • [10] Milnor link invariants and quantum 3-manifold invariants
    Habegger, N
    Orr, KE
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (02) : 322 - 344