Fingerprints of the quantum space-time in time-dependent quantum mechanics: An emergent geometric phase

被引:4
|
作者
Chakraborty, Anwesha [1 ]
Nandi, Partha [1 ]
Chakraborty, Biswajit [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Dept Theoret Sci, JD Block,Sect 3, Kolkata 700106, India
关键词
COHERENT STATES; EVOLUTION;
D O I
10.1016/j.nuclphysb.2022.115691
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show the emergence of Berry phase in a forced harmonic oscillator system placed in the quantum space-time of Moyal type, where the time 't' is also an operator. An effective commutative description of the system gives a time dependent generalised harmonic oscillator system with perturbation linear in position and momentum. The system is then diagonalised to get a generalised harmonic oscillator and then its adiabatic evolution over time-period T is studied in Heisenberg picture to compute the expression of geometric phase-shift. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Geometric Aspects of Space-Time Reflection Symmetry in Quantum Mechanics
    Bender, Carl M.
    Brody, Dorje C.
    Hughston, Lane P.
    Meister, Bernhard K.
    [J]. NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 185 - 199
  • [2] Time-dependent quantum correlations in phase space
    Krumm, F.
    Vogel, W.
    Sperling, J.
    [J]. PHYSICAL REVIEW A, 2017, 95 (06)
  • [3] Individuation in Quantum Mechanics and Space-Time
    Gregg Jaeger
    [J]. Foundations of Physics, 2010, 40 : 1396 - 1409
  • [4] Illusion of space-time and quantum mechanics
    Smrz, Pavel K.
    [J]. PHYSICS ESSAYS, 2010, 23 (01) : 64 - 74
  • [5] Quantum mechanics in curved space-time
    C. C. Barros
    [J]. The European Physical Journal C - Particles and Fields, 2005, 42 : 119 - 126
  • [6] Individuation in Quantum Mechanics and Space-Time
    Jaeger, Gregg
    [J]. FOUNDATIONS OF PHYSICS, 2010, 40 (9-10) : 1396 - 1409
  • [7] QUANTUM MECHANICS IN CURVED SPACE-TIME
    MISRA, SP
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1960, 23 (01): : 1 - 16
  • [8] Quantum mechanics in curved space-time
    Barros, CC
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2005, 42 (01): : 119 - 126
  • [9] STOCHASTIC LOCALIZATION, QUANTUM-MECHANICS ON PHASE-SPACE AND QUANTUM SPACE-TIME
    ALI, ST
    [J]. RIVISTA DEL NUOVO CIMENTO, 1985, 8 (11): : 1 - 128
  • [10] FRACTAL SPACE-TIME - A GEOMETRIC ANALOG OF RELATIVISTIC QUANTUM-MECHANICS
    ORD, GN
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (09): : 1869 - 1884