Covariant quantum fields on noncommutative spacetimes

被引:7
|
作者
Balachandran, A. P. [1 ]
Ibort, A. [2 ]
Marmo, G. [3 ]
Martone, M. [1 ,3 ]
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Univ Carlos III Madrid, Dept Matemat, Madrid 28911, Spain
[3] Univ Naples Federico II, Dipartimento Sci Fis, INFN, Sez Napoli, I-80126 Naples, Italy
来源
关键词
Non-Commutative Geometry; Space-Time Symmetries;
D O I
10.1007/JHEP03(2011)057
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A spinless quantum covariant field. on Minkowski spacetime Md+1 obeys the relation U(a, Lambda)phi(x)U(a, Lambda)(-1) = phi(Lambda x + a) where (a, Lambda) is an element of the Poincare group P and U : (a, Lambda) -> U(a, Lambda) is an unitary representation on quantum vector states. It expresses the fact that Poincare transformations are being unitarily implemented. It has a classical analogy where field covariance shows that Poincare transformations are canonically implemented. Covariance is self-reproducing: products of covariant fields are covariant. We recall these properties and use them to formulate the notion of covariant quantum fields on noncommutative spacetimes. In this way all our earlier results on dressing, statistics, etc. for Moyal spacetimes are derived transparently. For the Voros algebra, covariance and the *-operation are in conflict so that there are no *-covariant Voros fields, a result we found earlier. The notion of Drinfel'd twist underlying much of the preceding discussion is extended to discrete abelian and nonabelian groups such as the mapping class groups of topological geons. For twists involving nonabelian groups the emergent spacetimes are nonassociative.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Covariant quantum fields on noncommutative spacetimes
    A. P. Balachandran
    A. Ibort
    G. Marmo
    M. Martone
    [J]. Journal of High Energy Physics, 2011
  • [2] Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology
    Balachandran, Aiyalam P.
    Ibort, Alberto
    Marmo, Giuseppe
    Martone, Mario
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [3] Quantum geons and noncommutative spacetimes
    A. P. Balachandran
    A. Ibort
    G. Marmo
    M. Martone
    [J]. General Relativity and Gravitation, 2011, 43 : 3531 - 3567
  • [4] Quantum geons and noncommutative spacetimes
    Balachandran, A. P.
    Ibort, A.
    Marmo, G.
    Martone, M.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (12) : 3531 - 3567
  • [5] QUANTUM GROUP COVARIANT NONCOMMUTATIVE GEOMETRY
    ISAEV, AP
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (12) : 6784 - 6801
  • [6] Quantum groups and noncommutative spacetimes with cosmological constant
    Ballesteros, A.
    Gutierrez-Sagredo, I.
    Herranz, F. J.
    Meusburger, C.
    Naranjo, P.
    [J]. 8TH INTERNATIONAL WORKSHOP DICE2016: SPACETIME - MATTER - QUANTUM MECHANICS, 2017, 880
  • [7] Covariant fields on anti-de Sitter spacetimes
    Cotaescu, Ion I.
    [J]. MODERN PHYSICS LETTERS A, 2018, 33 (04)
  • [8] Covariant quantum mechanics applied to noncommutative geometry
    Astuti, Valerio
    [J]. CONCEPTUAL AND TECHNICAL CHALLENGES FOR QUANTUM GRAVITY 2014 - PARALLEL SESSION: NONCOMMUTATIVE GEOMETRY AND QUANTUM GRAVITY, 2015, 634
  • [9] Covariant and quasi-covariant quantum dynamics in Robertson-Walker spacetimes
    Buchholz, D
    Mund, J
    Summers, SJ
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (24) : 6417 - 6434
  • [10] COVARIANT QUANTUM STATISTICS OF FIELDS
    BARUT, AO
    [J]. PHYSICAL REVIEW, 1958, 109 (04): : 1376 - 1380