Close relationship between leaf life span and seedling relative growth rate in temperate hardwood species

被引:5
|
作者
Seiwa, Kenji [1 ]
Kikuzawa, Kihachiro [2 ]
机构
[1] Tohoku Univ, Lab Forest Ecol, Grad Sch Agr Sci, Naruko, Miyagi 9896711, Japan
[2] Ishikawa Prefectural Univ, Ecol Lab, Dept Environm Sci, Nonoichi, Ishikawa 9218836, Japan
关键词
Canopy gap; Leaf area ratio; Leaf weight ratio; Net assimilation rate; Specific leaf area; Successional position; LIGHT-DEPENDENT CHANGES; SUCCESSIONAL STATUS; SHADE-TOLERANCE; TRADE-OFFS; ADAPTIVE SIGNIFICANCE; TREE SEEDLINGS; WOODY-PLANTS; CHANGE RANK; NITROGEN; PHENOLOGY;
D O I
10.1007/s11284-010-0774-3
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The life span of resource-acquiring organs (leaves, shoots, fine roots) is closely associated with species successional position and environmental resource availability. We examined to what extent leaf life span is related to inter- and intraspecific variation in seedling relative growth rate (RGR). We examined relationships between relative growth rate in mass (RGR(M)) or height (RGR(H)) and leaf life span, together with classical RGR(M) components [net assimilation rate (NAR), specific leaf area (SLA), leaf weight ratio (LWR), and leaf area ratio (LAR)] for seedlings of five hardwood species of different successional position across a wide range of environmental resource availability, including the presence or absence of leaf litter in shaded forest understory, small canopy gaps, and large canopy gaps. Both SLA and LAR were negatively correlated with RGR(M) along the environmental gradient for all species. However, positive correlations were observed among species within microsites, indicating that these two components cannot consistently explain the variation in RGR(M). Both NAR and LWR affect interspecific, but not intraspecific, variation in RGR(M). Leaf life span was negatively correlated with either RGR(M) or RGR(H) in both inter- and intraspecific comparisons. Species with short-lived, physiologically active leaves have high growth rates, particularly in resource-rich environments. Consequently, leaf life span is a good predictor of seedling RGR. Leaf life span affects plant performance and has a strong and consistent effect on tree seedling growth, even among contrasting environments.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 50 条