A one-dimensional Radon transform on SO(3) and its application to texture goniometry

被引:10
|
作者
Bernstein, S
Schaeben, H
机构
[1] Bauhaus Univ Weimar, Fac Media, D-99423 Weimar, Germany
[2] Freiberg Univ Min & Technol, Geosci Math & Informat Grp, D-09596 Freiberg, Germany
关键词
spherical Radon transform; Radon transform on the group SO(3); ODF-to-PDF; inversion; texture goniometry;
D O I
10.1002/mma.612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-dimensional Radon transform on the group SO(3), which is motivated by texture goniometry. In particular, we will derive several inversion formulae and compare them with the inversion of the one-dimensional spherical Radon transform on S-3 for even functions. Copyright (C) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:1269 / 1289
页数:21
相关论文
共 50 条
  • [1] Inverse radon transform with one-dimensional wavelet transform
    Qu Gangrong
    [J]. Acta Mathematicae Applicatae Sinica, 2000, 16 (1) : 70 - 77
  • [2] INVERSE RADON TRANSFORM WITH ONE-DIMENSIONAL WAVELET TRANSFORM
    渠刚荣
    [J]. Acta Mathematicae Applicatae Sinica, 2000, (01) : 70 - 77
  • [3] The generalized totally geodesic Radon transform and its application to texture analysis
    Bernstein, Swanhild
    Hielscher, Ralf
    Schaehen, Helmut
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (04) : 379 - 394
  • [4] Inversion of the Kipriyanov-Radon transform via fractional derivatives in a one-dimensional parameter
    Lyakhov L.N.
    Gots G.
    [J]. Journal of Mathematical Sciences, 2009, 158 (2) : 235 - 240
  • [5] Application of Z Transform in the Design of One-dimensional Photonic Crystal
    Zhang, Juan
    Fu, Wenpeng
    Zhang, Rongjun
    [J]. QUANTUM, NANO, MICRO TECHNOLOGIES AND APPLIED RESEARCHES, 2014, 481 : 225 - 229
  • [6] One-Dimensional Quaternion Fourier Transform with Application to Probability Theory
    Ekasasmita, Wahyuni
    Bahri, Mawardi
    Bachtiar, Nasrullah
    Rahim, Amran
    Nur, Muhammad
    [J]. SYMMETRY-BASEL, 2023, 15 (04):
  • [7] Kernel-based methods for inversion of the Radon transform on SO(3) and their applications to texture analysis
    van den Boogaart, K. G.
    Hielscher, R.
    Prestin, J.
    Schaeben, H.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (01) : 122 - 140
  • [8] THREE-DIMENSIONAL SPARSE HYPERBOLIC RADON TRANSFORM AND ITS APPLICATION TO DEMULTIPLE
    Gong, Xiangbo
    Wang, Shenchao
    Zhang, Pan
    [J]. JOURNAL OF SEISMIC EXPLORATION, 2018, 27 (02): : 137 - 150
  • [9] Anisotropic Radon transform and its application to demultiple
    Gong Xiang-Bo
    Han Li-Guo
    Li Hong-Jian
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2014, 57 (09): : 2928 - 2936
  • [10] Lekhnitskii’s formalism of one-dimensional quasicrystals and its application
    YANG GAO
    [J]. Pramana, 2012, 79 : 311 - 318