Polariton condensation and lasing in optical microcavities: The decoherence-driven crossover

被引:29
|
作者
Szymanska, MH [1 ]
Littlewood, PB [1 ]
Simons, BD [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 01期
关键词
D O I
10.1103/PhysRevA.68.013818
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the behavior of a system that consists of a photon mode dipole coupled to a medium of two-level oscillators in a microcavity in the presence of decoherence. We consider two types of decoherence processes, which are analogous to magnetic and nonmagnetic impurities in superconductors. We study different phases of this system as the decoherence strength and the excitation density are changed. For a low decoherence we obtain a polariton condensate with comparable excitonic and photonic parts at low densities and a BCS-like state with a bigger photon component due to the fermionic phase-space filling effect at high densities. In both cases there is a large gap in the density of states. As the decoherence is increased, the gap is broadened and suppressed, resulting in a gapless condensate and finally a suppression of the coherence in a low-density regime and a laser at the high-density limit. A crossover between these regimes is studied in a self-consistent way analogous to the Abrikosov and Gor'kov theory of gapless superconductivity [A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP 12, 1243 (1960)].
引用
收藏
页数:15
相关论文
共 50 条
  • [1] The crossover between lasing and polariton condensation in optical microcavities
    Szymanska, MH
    Littlewood, PB
    SOLID STATE COMMUNICATIONS, 2002, 124 (03) : 103 - 107
  • [2] Crossover from exciton-polariton condensation to photon lasing in an optical trap
    Pieczarka, M.
    Bieganska, D.
    Schneider, C.
    Hoefling, S.
    Klembt, S.
    Sek, G.
    Syperek, M.
    OPTICS EXPRESS, 2022, 30 (10) : 17070 - 17079
  • [3] Decoherence-driven quantum transport
    Kim, SW
    Choi, MS
    PHYSICAL REVIEW LETTERS, 2005, 95 (22)
  • [4] Lasing and polariton condensation: Two distinct transitions in GaAs microcavities with stress traps
    Nelsen, B.
    Balili, R.
    Snoke, D. W.
    Pfeiffer, L.
    West, K.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (12)
  • [5] Polariton Bose condensation in microcavities
    Malpuech, G
    Kavokin, A
    Laussy, FP
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2003, 195 (03): : 568 - 578
  • [6] Lasing and condensation in semiconductor microcavities
    Baumberg, JJ
    Lagoudakis, PG
    Martin-Fernandez, MD
    ELECTRON AND PHOTON CONFINEMENT IN SEMICONDUCTOR NANOSTRUCTURES, 2003, 150 : 147 - 166
  • [7] Decoherence-driven cooling of a degenerate spinor Bose gas
    Lewandowski, HJ
    McGuirk, JM
    Harber, DM
    Cornell, EA
    PHYSICAL REVIEW LETTERS, 2003, 91 (24)
  • [8] Spatial and temporal dynamics of the crossover from exciton-polariton condensation to photon lasing
    Matsuo, Yasuhiro
    Fraser, Michael D.
    Kusudo, Kenichiro
    Loeffler, Andreas
    Hoefling, Sven
    Forchel, Alfred
    Yamamoto, Yoshihisa
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (09)
  • [9] Robust Room-Temperature Polariton Condensation and Lasing in Scalable FAPbBr3 Perovskite Microcavities
    Krol, Mateusz
    Oldfield, Mitko
    Wurdack, Matthias
    Estrecho, Eliezer
    Beane, Gary
    Hou, Yihui
    Truscott, Andrew G.
    Schiffrin, Agustin
    Ostrovskaya, Elena A.
    ACS PHOTONICS, 2025,
  • [10] Room-temperature polariton lasing in semiconductor microcavities
    Christopoulos, S.
    von Hogersthal, G. Baldassarri Hoger
    Grundy, A. J. D.
    Lagoudakis, P. G.
    Kavokin, A. V.
    Baumberg, J. J.
    Christmann, G.
    Butte, R.
    Feltin, E.
    Carlin, J. -F.
    Grandjean, N.
    PHYSICAL REVIEW LETTERS, 2007, 98 (12)