Feature selection of EMG signals based on the separability matrix and rough set theory

被引:0
|
作者
Han, JS [1 ]
Bien, ZN [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Comp Sci & Elect Engn, Taejon 305701, South Korea
关键词
feature selection; separability matrix; EMG signals; pattern classification; and FMMNN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recognizing bio-signals, such as EMG, EEG, EOG and ECG, is a promising theme of study since it provides with a convenient means for human-machine interaction. In the earlier works were proposed various approaches of determining features of bio-signals that are capable of discerning predefined motions/intentions of human, but most of them were only applicable to a single subject due to inherent characteristics of bio-signals. Lately, several structures of pattern classifier with the known features have been proposed to cope with the subject-dependency, but their error rates are still conspicuous in accommodating multiple subjects. Based on the separability matrix and rough set theory, this paper presents a comparative experimental study to minimize the subject-dependency. It is shown that the induced feature set obtained by the proposed feature selection algorithm, has less subject-dependency than other existing methods.
引用
收藏
页码:307 / 312
页数:6
相关论文
共 50 条
  • [1] Feature Selection Based on Neighborhood Systems and Rough Set Theory
    He, Ming
    [J]. WKDD: 2009 SECOND INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, : 3 - 5
  • [2] Fault feature subset selection based on rough set theory
    Zhao, Yueling
    Xu, Lin
    Wang, Jianhui
    Gu, Shusheng
    [J]. Complexity Analysis and Control for Social, Economical and Biological Systems, 2006, 1 : 162 - 171
  • [3] A Novel Algorithm for Feature Selection Based on Rough set Theory
    Zhou Feng-xiang
    Mu Chun-ge
    Xu Qun-san
    Zhang Xiao-feng
    [J]. 2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 800 - +
  • [4] An Exact Feature Selection Algorithm Based on Rough Set Theory
    Rezvan, Mohammad Taghi
    Hamadani, Ali Zeinal
    Hejazi, Seyed Reza
    [J]. COMPLEXITY, 2015, 20 (05) : 50 - 62
  • [5] Information and Rough Set Theory Based Feature Selection Techniques
    Cervante, Liam
    Gao, Xiaoying
    [J]. ACTIVE MEDIA TECHNOLOGY, AMT 2013, 2013, 8210 : 166 - 176
  • [6] Uncertainty and Feature Selection in Rough Set Theory
    Liang, Jiye
    [J]. ROUGH SETS AND KNOWLEDGE TECHNOLOGY, 2011, 6954 : 8 - 15
  • [7] An approach for selective ensemble feature selection based on rough set theory
    Yang, Yong
    Wang, Guoyin
    He, Kun
    [J]. ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2007, 4481 : 518 - +
  • [8] Using a Novel Merit for Feature Selection Based on Rough Set Theory
    Mohtashami, Mohammad
    Eftekhari, Mahdi
    [J]. 2018 6TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), 2018, : 68 - 70
  • [9] Feature Selection Based on Ant Colony Optimization and Rough Set Theory
    He, Ming
    [J]. ISCSCT 2008: INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND COMPUTATIONAL TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 247 - 250
  • [10] Signature Verification Using Rough Set Theory Based Feature Selection
    Das, Sanghamitra
    Roy, Abhinab
    [J]. COMPUTATIONAL INTELLIGENCE IN DATA MINING, CIDM, VOL 2, 2016, 411 : 153 - 161