Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term

被引:34
|
作者
Chen, Chang-Ming [2 ]
Liu, F. [1 ]
Anh, V. [1 ]
Turner, I. [1 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
澳大利亚研究理事会;
关键词
The variable-order Galilei invariant advection diffusion equation with a nonlinear source term; The variable-order Riemann-Liouville fractional partial derivative; Stability; Convergence; Numerical scheme improving temporal accuracy; FRACTIONAL DIFFUSION; ANOMALOUS DIFFUSION; RANDOM-WALKS; SUBDIFFUSION; DIFFERENTIATION; TRANSPORT; STABILITY; ACCURACY; FIELDS;
D O I
10.1016/j.amc.2010.12.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:5729 / 5742
页数:14
相关论文
共 50 条
  • [1] Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection–diffusion equation
    M. A. Zaky
    D. Baleanu
    J. F. Alzaidy
    E. Hashemizadeh
    [J]. Advances in Difference Equations, 2018
  • [2] Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection-diffusion equation
    Zaky, M. A.
    Baleanu, D.
    Alzaidy, J. F.
    Hashemizadeh, E.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [3] NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM
    Zhuang, P.
    Liu, F.
    Anh, V.
    Turner, I.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1760 - 1781
  • [4] Space-Time Spectral Collocation Algorithm for the Variable-Order Galilei Invariant Advection Diffusion Equations with a Nonlinear Source Term
    Abd-Elkawy, Mohamed A.
    Alqahtani, Rubayyi T.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (01) : 1 - 20
  • [5] Meshfree methods for the nonlinear variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Liu, Zhiyong
    Yang, Jiye
    Xu, Qiuyan
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 156 : 126 - 143
  • [6] Gegenbauer wavelet operational matrix method for solving variable-order non-linear reaction–diffusion and Galilei invariant advection–diffusion equations
    Sachin Kumar
    Prashant Pandey
    Subir Das
    [J]. Computational and Applied Mathematics, 2019, 38
  • [7] Meshfree methods for the variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Yang, Jiye
    Liu, Zhiyong
    Xu, Qiuyan
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 211 : 489 - 514
  • [8] Numerical analysis for a variable-order nonlinear cable equation
    Chen, Chang-Ming
    Liu, F.
    Burrage, K.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) : 209 - 224
  • [9] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    M. Parvizi
    M. R. Eslahchi
    Mehdi Dehghan
    [J]. Numerical Algorithms, 2015, 68 : 601 - 629
  • [10] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    Parvizi, M.
    Eslahchi, M. R.
    Dehghan, Mehdi
    [J]. NUMERICAL ALGORITHMS, 2015, 68 (03) : 601 - 629