so-metrizable spaces and images of metric spaces

被引:3
|
作者
Yang, Songlin [2 ,3 ]
Ge, Xun [1 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[2] Soochow Univ, Wenzheng Coll, Suzhou 215000, Peoples R China
[3] Soochow Univ, Soochow Coll, Suzhou 215006, Peoples R China
来源
OPEN MATHEMATICS | 2021年 / 19卷 / 01期
基金
中国国家自然科学基金;
关键词
so-network; so-metrizable space; so-open mapping; compact-covering mapping; sigma-mapping; COVERING-MAPS;
D O I
10.1515/math-2021-0082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
so-metrizable spaces are a class of important generalized metric spaces between metric spaces and sn-metrizable spaces where a space is called an so-metrizable space if it has a sigma-locally finite so network. As the further work that attaches to the celebrated Alexandrov conjecture, it is interesting to characterize so-metrizable spaces by images of metric spaces. This paper gives such characterizations for so-metrizable spaces. More precisely, this paper introduces so-open mappings and uses the "Pomomarev's method" to prove that a space X is an so-metrizable space if and only if it is an so-open, compact-covering, sigma-image of a metric space, if and only if it is an so-open, sigma-image of a metric space. In addition, it is shown that so-open mapping is a simplified form of sn-open mapping (resp. 2-sequence-covering mapping if the domain is metrizable). Results of this paper give some new characterizations of so-metrizable spaces and establish some equivalent relations among so-open mapping, sn-open mapping and 2-sequence-covering mapping, which further enrich and deepen generalized metric space theory.
引用
收藏
页码:1145 / 1152
页数:8
相关论文
共 50 条
  • [1] ON so-METRIZABLE SPACES
    Ge, Xun
    [J]. MATEMATICKI VESNIK, 2009, 61 (03): : 209 - 218
  • [2] Preservations of so-metrizable spaces
    Lin, Shou
    Ge, Ying
    [J]. FILOMAT, 2012, 26 (04) : 801 - 807
  • [3] METRIZABLE SPACES AS IMAGES OF ZERO DIMENSIONAL METRIC SPACES
    NEDEV, SI
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1974, 27 (07): : 877 - 879
  • [4] g-metrizable spaces and the images of semi-metric spaces
    Ge, Ying
    Lin, Shou
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (04) : 1141 - 1149
  • [5] g-metrizable spaces and the images of semi-metric spaces
    Ying Ge
    Shou Lin
    [J]. Czechoslovak Mathematical Journal, 2007, 57 : 1141 - 1149
  • [6] I-sn-metrizable spaces and the images of semi-metric spaces
    Zhou, Xiangeng
    Liu, Fang
    Liu, Li
    Lin, Shou
    [J]. OPEN MATHEMATICS, 2024, 22 (01):
  • [7] π-METRIZABLE SPACES AND STRONGLY π-METRIZABLE SPACES
    Lin, Fucai
    Lin, Shou
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 273 - 285
  • [8] On σ-images of Metric Spaces
    LIANG Hong-liang
    College of Mathematics and Information Science
    [J]. Chinese Quarterly Journal of Mathematics, 2005, (02) : 163 - 166
  • [9] Spaces of measures on metrizable spaces
    Dobrowolski, T
    Sakai, K
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1996, 72 (03) : 215 - 258
  • [10] METRIZABLE SPACES
    ROBINSON, SM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (06): : 677 - &