Machine learning for molecular and materials science

被引:2497
|
作者
Butler, Keith T. [1 ]
Davies, Daniel W. [2 ]
Cartwright, Hugh [3 ]
Isayev, Olexandr [4 ]
Walsh, Aron [5 ,6 ]
机构
[1] Rutherford Appleton Lab, ISIS Facil, Harwell Campus, Harwell, Berks, England
[2] Univ Bath, Dept Chem, Bath, Avon, England
[3] Univ Oxford, Dept Chem, Oxford, England
[4] Univ North Carolina Chapel Hill, Eshelman Sch Pharm, Chapel Hill, NC USA
[5] Yonsei Univ, Dept Mat Sci & Engn, Seoul, South Korea
[6] Imperial Coll London, Dept Mat, London, England
基金
英国工程与自然科学研究理事会;
关键词
COMPUTATIONAL CHEMISTRY; NEURAL-NETWORKS; DISCOVERY; DESIGN; COMPUTER;
D O I
10.1038/s41586-018-0337-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here we summarize recent progress in machine learning for the chemical sciences. We outline machine-learning techniques that are suitable for addressing research questions in this domain, as well as future directions for the field. We envisage a future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence.
引用
收藏
页码:547 / 555
页数:9
相关论文
共 50 条
  • [1] Machine learning for molecular and materials science
    Keith T. Butler
    Daniel W. Davies
    Hugh Cartwright
    Olexandr Isayev
    Aron Walsh
    [J]. Nature, 2018, 559 : 547 - 555
  • [2] Machine learning in materials science
    Wei, Jing
    Chu, Xuan
    Sun, Xiang-Yu
    Xu, Kun
    Deng, Hui-Xiong
    Chen, Jigen
    Wei, Zhongming
    Lei, Ming
    [J]. INFOMAT, 2019, 1 (03) : 338 - 358
  • [3] Catalyze Materials Science with Machine Learning
    Kim, Jaehyun
    Kang, Donghoon
    Kim, Sangbum
    Jang, Ho Won
    [J]. ACS MATERIALS LETTERS, 2021, 3 (08): : 1151 - 1171
  • [4] Explainable machine learning in materials science
    Zhong, Xiaoting
    Gallagher, Brian
    Liu, Shusen
    Kailkhura, Bhavya
    Hiszpanski, Anna
    Han, T. Yong-Jin
    [J]. NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [5] Explainable machine learning in materials science
    Xiaoting Zhong
    Brian Gallagher
    Shusen Liu
    Bhavya Kailkhura
    Anna Hiszpanski
    T. Yong-Jin Han
    [J]. npj Computational Materials, 8
  • [6] Editorial: Machine Learning in Materials Science
    Merz, Kenneth M.
    Choong, Yee Siew
    Cournia, Zoe
    Isayev, Olexandr
    Soares, Thereza A.
    Wei, Guo-Wei
    Zhu, Feng
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (10) : 3959 - 3960
  • [7] Advancement of machine learning in materials science
    Rajendra, P.
    Girisha, A.
    Naidu, T. Gunavardhana
    [J]. MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 5503 - 5507
  • [8] Explainable Machine Learning in the Research of Materials Science
    Wang, Guanjie
    Liu, Shengxian
    Zhou, Jian
    Sun, Zhimei
    [J]. Jinshu Xuebao/Acta Metallurgica Sinica, 2024, 60 (10): : 1345 - 1361
  • [9] Big data and machine learning for materials science
    Jose F. Rodrigues
    Larisa Florea
    Maria C. F. de Oliveira
    Dermot Diamond
    Osvaldo N. Oliveira
    [J]. Discover Materials, 1 (1):
  • [10] Opportunities and Challenges for Machine Learning in Materials Science
    Morgan, Dane
    Jacobs, Ryan
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 50, 2020, 2020, 50 : 71 - 103