Dirac strings and monopoles in the continuum limit of SU(2) lattice gauge theory

被引:22
|
作者
Chernodub, MN
Gubarev, FV
Polikarpov, MI
Zakharov, VI
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
[2] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
关键词
D O I
10.1016/S0550-3213(00)00603-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Magnetic monopoles are known to emerge as leading non-perturbative fluctuations in the lattice version of non-Abelian gauge theories in some gauges. In terms of the Dirac quantization condition, these monopoles have magnetic charge \Q(M)\ = 2. Also, magnetic monopoles with \Q(M)\ = 1 can be introduced on the lattice via the 't Hooft loop operator. We consider the \Q(M)\ I = 1,2 monopoles in the continuum limit of the lattice gauge theories. To substitute for the Dirac strings which cost no action on the lattice, we allow for singular gauge potentials which are absent in the standard continuum version. Once the Dirac strings are allowed, it turns possible to find a solution with zero action for a monopole-antimonopole pair. This implies equivalence of the standard and modified continuum versions in perturbation theory. To imitate the nonperturbative vacuum, we introduce then a nonsingular background. The modified continuum version of the gluodynamics allows in this case for monopoles with finite non-vanishing action. Using similar techniques, we construct the 't Hooft loop operator in the continuum and predict its behavior at small and large distances both at zero and high temperatures. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:107 / 128
页数:22
相关论文
共 50 条
  • [1] Continuum limit in abelian projected SU(2) lattice gauge theory
    Bornyakov, V
    Müller-Preussker, M
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 646 - 648
  • [2] Thermal monopoles in the SU(2) gauge theory on a lattice
    Bornyakov, V. G.
    Kononenko, A. G.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2014, 69 (04) : 287 - 292
  • [3] Thermal monopoles in the SU(2) gauge theory on a lattice
    V. G. Bornyakov
    A. G. Kononenko
    Moscow University Physics Bulletin, 2014, 69 : 287 - 292
  • [4] Monopoles and instantons in SU(2) lattice gauge theory
    Kovács, TG
    Schram, Z
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 530 - 532
  • [5] TOWARDS THE CONTINUUM-LIMIT OF SU(2) LATTICE GAUGE-THEORY
    MICHAEL, C
    TEPER, M
    PHYSICS LETTERS B, 1987, 199 (01) : 95 - 100
  • [6] TOWARDS THE CONTINUUM-LIMIT OF SU (2) LATTICE GAUGE-THEORY
    BOOTH, SP
    BOWLER, KC
    HENTY, DS
    KENWAY, RD
    PENDLETON, BJ
    RICHARDS, DG
    SIMPSON, AD
    IRVING, AC
    MCKERRELL, A
    MICHAEL, C
    STEPHENSON, PW
    TEPER, M
    DECKER, K
    PHYSICS LETTERS B, 1992, 275 (3-4) : 424 - 428
  • [7] Monopoles and deconfinement transition in SU(2) lattice gauge theory
    Damm, G
    Kerler, W
    PHYSICS LETTERS B, 1997, 397 (3-4) : 216 - 222
  • [8] Monopoles contra vortices in SU(2) lattice gauge theory?
    Langfeld, K
    Reinhardt, H
    PHYSICAL REVIEW D, 1997, 55 (12): : 7993 - 7994
  • [9] THE DENSITY OF MONOPOLES IN SU(2) LATTICE GAUGE-THEORY
    BORNYAKOV, VG
    ILGENFRITZ, EM
    LAURSEN, ML
    MITRJUSHKIN, VK
    MULLERPREUSSKER, M
    VANDERSIJS, AJ
    ZADOROZHNY, AM
    PHYSICS LETTERS B, 1991, 261 (1-2) : 116 - 122
  • [10] CONTINUUM-LIMIT OF SU(2) LATTICE GAUGE-THEORY IN 5 DIMENSIONS
    MATONE, M
    PHYSICS LETTERS B, 1987, 187 (1-2) : 159 - 161