共 50 条
Two-dimensional Nitrogenated Holey Graphene (C2N) monolayer based glucose sensor for diabetes mellitus
被引:28
|作者:
Panigrahi, Puspamitra
[1
]
Sajjad, Muhammad
[2
,3
]
Singh, Deobrat
[4
]
Hussain, Tanveer
[5
]
Larsson, J. Andreas
[3
]
Ahuja, Rajeev
[4
,6
]
Singh, Nirpendra
[2
,7
]
机构:
[1] Hindustan Inst Technol & Sci, Ctr Clean Energy & Nano Convergence, Chennai 603103, India
[2] Khalifa Univ Sci & Technol, Dept Phys, Abu Dhabi 127788, U Arab Emirates
[3] Lulea Univ Techol, Dept Engn Sci & Math, Div Mat Sci, Appl Phys, SE-97187 Lulea, Sweden
[4] Uppsala Univ, Dept Phys & Astron, Mat Theory Div, Condensed Matter Theory Grp, Box 516, S-75120 Uppsala, Sweden
[5] Univ Queensland, Sch Chem Engn, St Lucia, Brisbane 4072, Australia
[6] Indian Inst Tech Ropar, Dept Phys, Rupnagar 140001, Punjab, India
[7] Khalifa Univ Sci & Technol, Ctr Catalysis & Separat CeCaS, Abu Dhabi 127788, U Arab Emirates
基金:
芬兰科学院;
瑞典研究理事会;
关键词:
Glucose Sensor;
Nitrogenated Holey Graphene;
2D Materials;
Electron Localization Function (ELF);
First-principles Calculations;
Non-equilibriumGreen's function (NEGF);
REDUCTION;
OXIDE;
D O I:
10.1016/j.apsusc.2021.151579
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Real-time monitoring of sugar molecules is crucial for diagnosis, controlling, and preventing diabetes. Here, we have proposed the potential of porous C2N monolayer-based glucose sensor to detect the sugar molecules (glucose, fructose, and xylose) by employing the van der Waals interactions corrected first-principles density functional theory and non-equilibrium Green's function methods. The binding energy turns out to be -0.93 (-1.31) eV for glucose, -0.84 (-1.23) eV for fructose, and -0.81 (-1.30) eV for xylose in gas phase (aqueous medium). The Bader charge analysis reveals that the C2N monolayer donates charge to the sugar molecules. The dimensionless electron localization function highlights that glucose, fructose, and xylose bind through physisorption. The adsorption of sugar molecules on the C2N monolayer increases the workfunction compared to 3.54 eV (pristine C2N) with about 2.00 eV, indicating a suppressed probability of electron mobility. The electronic transport properties of C2N based device reveals distinct characteristics and zero-bias transmissions. The distinctive properties of the C2N monolayer can be indexed as promising identifiers for glucose sensors to detect blood sugar.
引用
收藏
页数:7
相关论文