共 50 条
A randomized, double-blind, placebo-controlled trial of blue wavelength light exposure on sleep and recovery of brain structure, function, and cognition following mild traumatic brain injury
被引:61
|作者:
Killgore, William D. S.
[1
]
Vanuk, John R.
[1
]
Shane, Bradley R.
[1
]
Weber, Mareen
[1
]
Bajaj, Sahil
[1
]
机构:
[1] Univ Arizona, Coll Med, Dept Psychiat, Tucson, AZ 85721 USA
关键词:
mTBI;
Concussion;
Light therapy;
Blue light;
Sleep;
Circadian rhythm;
Neuroimaging;
DTI;
VBM;
Connectivity;
DELAYED SLEEP;
BRIGHT LIGHT;
MELATONIN;
DEPRIVATION;
DISTURBANCE;
WAKE;
CONNECTIVITY;
SENSITIVITY;
DIFFUSION;
THALAMUS;
D O I:
10.1016/j.nbd.2019.104679
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Sleep and circadian rhythms are among the most powerful but least understood contributors to cognitive performance and brain health. Here we capitalize on the circadian resetting effect of blue-wavelength light to phase shift the sleep patterns of adult patients (aged 18-48 years) recovering from mild traumatic brain injury (mTBI), with the aim of facilitating recovery of brain structure, connectivity, and cognitive performance. During a randomized, double-blind, placebo-controlled trial of 32 adults with a recent mTBI, we compared 6-weeks of daily 30-min pulses of blue light (peak lambda = 469 nm) each morning versus amber placebo light (peak lambda= 578 nm) on neurocognitive and neuroimaging outcomes, including gray matter volume (GMV), resting-state functional connectivity, directed connectivity using Granger causality, and white matter integrity using diffusion tensor imaging (DTI). Relative to placebo, morning blue light led to phase-advanced sleep timing, reduced daytime sleepiness, and improved executive functioning, and was associated with increased volume of the posterior thalamus (i.e., pulvinar), greater thalamo-cortical functional connectivity, and increased axonal integrity of these pathways. These findings provide insight into the contributions of the circadian and sleep systems in brain repair and lay the groundwork for interventions targeting the retinohypothalamic system to facilitate injury recovery.
引用
收藏
页数:16
相关论文