Finite-time statistics of scalar diffusion in Lagrangian coherent structures

被引:7
|
作者
Tang, Wenbo [1 ]
Walker, Phillip [1 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 04期
基金
美国国家科学基金会;
关键词
PROBABILITY-DISTRIBUTION; TRANSPORT; DEFINITION; FLUID;
D O I
10.1103/PhysRevE.86.045201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the variability of passive scalar diffusion via the statistics of stochastic particle dispersion in a chaotic flow. We find that at intermediate times when the statistics of individual trajectories start to exhibit scaling-law behaviors, scalar variance over the entire domain exhibits multimodal structure. We demarcate the domain based on Lagrangian coherent structures and find that the conditional statistics exhibit strong unimodal behavior, indicating coherence of effective diffusion among each Lagrangian partition of the flow.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Lagrangian coherent structures and the smallest finite-time Lyapunov exponent
    Haller, George
    Sapsis, Themistoklis
    CHAOS, 2011, 21 (02)
  • [2] Finite-Time Lyapunov Exponents and Lagrangian Coherent Structures in Uncertain Unsteady Flows
    Guo, Hanqi
    He, Wenbin
    Peterka, Tom
    Shen, Han-Wei
    Collis, Scott M.
    Helmus, Jonathan J.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (06) : 1672 - 1682
  • [3] Improved Lagrangian coherent structures with modified finite-time Lyapunov exponents in the PIC framework
    Qian, Zhihao
    Liu, Moubin
    Wang, Lihua
    Zhang, Chuanzeng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [4] Applications of Finite-Time Lyapunov Exponent in detecting Lagrangian Coherent Structures for coastal ocean processes: a review
    Peng, Yue
    Xu, Xin
    Shao, Qi
    Weng, Haiyong
    Niu, Haibo
    Li, Zhiyu
    Zhang, Chen
    Li, Pu
    Zhong, Xiaomei
    Yang, Jie
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [5] Identifying finite-time coherent sets from limited quantities of Lagrangian data
    Williams, Matthew O.
    Rypina, Irina I.
    Rowley, Clarence W.
    CHAOS, 2015, 25 (08)
  • [6] Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows
    Shadden, SC
    Lekien, F
    Marsden, JE
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 212 (3-4) : 271 - 304
  • [7] Finite-time Euler singularities: A Lagrangian perspective
    Grafke, Tobias
    Grauer, Rainer
    APPLIED MATHEMATICS LETTERS, 2013, 26 (04) : 500 - 505
  • [8] Finite-time singularity formation for an active scalar equation
    Elgindi, Tarek
    Ibrahim, Slim
    Shen, Shengyi
    NONLINEARITY, 2021, 34 (07) : 5045 - 5069
  • [9] Finite-time Lagrangian transport analysis: stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents
    Branicki, M.
    Wiggins, S.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2010, 17 (01) : 1 - 36
  • [10] Chapter 9 Almost-Invariant and Finite-Time Coherent Sets: Directionality, Duration, and Diffusion
    Froyland, Gary
    Padberg-Gehle, Kathrin
    ERGODIC THEORY, OPEN DYNAMICS, AND COHERENT STRUCTURES, 2014, 70 : 171 - 216