The uniqueness of cross-validation selected smoothing parameters in kernel estimation of nonparametric models

被引:12
|
作者
Li, Q [1 ]
Zhou, JX [1 ]
机构
[1] Texas A&M Univ, Dept Econ, College Stn, TX 77843 USA
关键词
D O I
10.1017/S0266466605050504
中图分类号
F [经济];
学科分类号
02 ;
摘要
We investigate the issue of the uniqueness of the cross-validation selected smoothing parameters in kernel estimation of multivariate nonparametric regression or conditional probability functions. When the covariates are all continuous variables, we provide a necessary and sufficient condition, and when the covariates are a mixture of categorical and continuous variables, we provide a simple sufficient condition that guarantees asymptotically the uniqueness of the cross-validation selected smoothing parameters.
引用
收藏
页码:1017 / 1025
页数:9
相关论文
共 50 条