Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage

被引:107
|
作者
Han, Dongmei [1 ,2 ]
Lougou, Bachirou Guene [1 ,2 ]
Xu, Yantao [1 ,2 ]
Shuai, Yong [1 ,2 ]
Huang, Xing [3 ]
机构
[1] Harbin Inst Technol, Key Lab Aerosp Thermophys, Minist Ind & Informat Technol, 92 West Dazhi St, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Energy Sci & Engn, 92 West Dazhi St, Harbin 150001, Peoples R China
[3] North China Univ Sci & Technol, Coll Met & Energy, 21 Bohai St, Tangshan 063009, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite phase change materials; Ternary chloride salts; Nanoparticles; Thermal property; Thermal energy storage; MOLTEN-SALT; HEAT-TRANSFER; PHYSICAL-PROPERTIES; NITRATE SALTS; PCM; CONDUCTIVITY; PERFORMANCE; CHALLENGES; STABILITY; BEHAVIOR;
D O I
10.1016/j.apenergy.2020.114674
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Chloride salts are widely used as thermal energy storage (TES) media for high-temperature solar TES systems. Their thermal properties are crucial for the performance of TES systems. In this study, we prepared and characterized chloride salts/nanoparticles composite phase change materials (CPCMs) for high-temperature thermal energy storage. The ternary chloride salts (MgCl2:KCl:NaCl with 51:22:27 molar ratio) were used as base salt and Al2O3, CuO, and ZnO nanoparticles were dispersed into the base salt at 0.7 wt% to form various composite phase change materials (CPCMs). The thermal properties of the base salt and CPCMs were measured. The results showed that the melting temperature of the CPCMs was very close to that of the base salt. The phase change latent heat of the CPCMs was slightly lower than that of the base salt while the addition of dopant nanoparticles clearly enhanced the thermal diffusivity and thermal conductivity of the CPCMs. In particular, the thermal conductivity of the CPCM doped with Al2O3 nanoparticles showed the most obvious enhancement, which increased by more than 48%, compared to that of the base salt. Al2O3 nanoparticles could be considered as an optimal additive to improve the thermal conductivity of chloride salts. Moreover, the CPCM with Al2O3 also exhibited excellent thermal stability. These good thermal characteristics of CPCM with Al2O3 nanoparticles endow it promising applications for high-temperature TES system.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Performance Design of High-Temperature Chloride Salts as Thermal Energy Storage Material
    Le Zhao
    Jingyao Wang
    Liu Cui
    Baorang Li
    Xiaoze Du
    Hongwei Wu
    Journal of Thermal Science, 2024, 33 : 479 - 490
  • [2] Performance Design of High-Temperature Chloride Salts as Thermal Energy Storage Material
    Zhao, Le
    Wang, Jingyao
    Cui, Liu
    Li, Baorang
    Du, Xiaoze
    Wu, Hongwei
    JOURNAL OF THERMAL SCIENCE, 2024, 33 (02) : 479 - 490
  • [3] Performance Design of High-Temperature Chloride Salts as Thermal Energy Storage Material
    ZHAO Le
    WANG Jingyao
    CUI Liu
    LI Baorang
    DU Xiaoze
    WU Hongwei
    Journal of Thermal Science, 2024, 33 (02) : 479 - 490
  • [4] Thermal properties of eutectic salts/ceramics/expanded graphite composite phase change materials for high-temperature thermal energy storage
    Ran, Xiaofeng
    Wang, Haoran
    Zhong, Yajuan
    Zhang, Feng
    Lin, Jun
    Zou, Hua
    Dai, Zhimin
    An, Baolin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 225
  • [5] Comprehensive thermal properties of ternary eutectic molten salt/nanoparticles composite phase change materials for high-temperature thermal energy storage
    Wu, Chunlei
    Wang, Qing
    Sun, Shipeng
    Wang, Xinmin
    Cui, Da
    Pan, Shuo
    Sheng, Hongyu
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 261
  • [6] Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage
    Pan, Ge-ChuanQi
    Ding, Jing
    Wang, Weilong
    Lu, Jianfeng
    Li, Jiang
    Wei, Xiaolan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 : 417 - 427
  • [7] High-temperature phase change materials for thermal energy storage
    Kenisarin, Murat M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (03): : 955 - 970
  • [8] Fabrication and thermal properties investigation of aluminium based composite phase change material for medium and high temperature thermal energy storage
    Li, Qi
    Cong, Lin
    Zhang, Xusheng
    Dong, Bo
    Zou, Boyang
    Du, Zheng
    Xiong, Yaxuan
    Li, Chuan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 211
  • [9] Geopolymer Encapsulation of a Chloride Salt Phase Change Material for High Temperature Thermal Energy Storage
    Jacob, Rhys
    Trout, Neil
    Raud, Ralf
    Clarke, Stephen
    Steinberg, Theodore A.
    Saman, Wasim
    Bruno, Frank
    SOLARPACES 2015: INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2016, 1734
  • [10] Microstructure and thermal properties of ternary chloride eutectic salts for high temperature thermal energy storage
    Xi, Shaobo
    Yuan, Zhun
    Yang, Senfeng
    Gong, Fengchun
    Liu, Shule
    Wang, Weilong
    Ding, Jing
    Lu, Jianfeng
    JOURNAL OF ENERGY STORAGE, 2024, 100