Quantum error-correction codes and absolutely maximally entangled states

被引:14
|
作者
Mazurek, Pawel [1 ,2 ]
Farkas, Mate [1 ,2 ]
Grudka, Andrzej [3 ]
Horodecki, Michal [1 ,2 ]
Studzinski, Michal [1 ]
机构
[1] Univ Gdansk, Fac Math, Natl Quantum Informat Ctr, Inst Theoret Phys & Astrophys, PL-80308 Gdansk, Poland
[2] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80308 Gdansk, Poland
[3] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
关键词
Boundary state - Entangled input state - Entanglement entropy - Entanglement swapping - Logical operators - Maximally entangled state - Of quantum-information - Quantum error correction codes;
D O I
10.1103/PhysRevA.101.042305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For every stabilizer N-qudit absolutely maximally entangled state, we present a method for determining the stabilizer generators and logical operators of a corresponding quantum error-correction code. These codes encode k qudits into N - k qudits, with k <= left perpendicular N/2 right perpendicular, where the local dimension d is prime. We use these methods to analyze the concatenation of such quantum codes and link this procedure to entanglement swapping. Using our techniques, we investigate the spread of quantum information on a tensor network code formerly used as a toy model for the AdS/CFT correspondence. In this network, we show how corrections arise to the Ryu-Takayanagi formula in the case of entangled input state, and that the bound on the entanglement entropy of the boundary state is saturated for absolutely maximally entangled input states.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Optimal quantum error correcting codes from absolutely maximally entangled states
    Raissi, Zahra
    Gogolin, Christian
    Riera, Arnau
    Acin, Antonio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (07)
  • [2] Topological graph states and quantum error-correction codes
    Liao, Pengcheng
    Sanders, Barry C.
    Feder, David L.
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [3] Absolutely maximally entangled states, quantum-maximum-distance-separable codes, and quantum repeaters
    Alsina, Daniel
    Razavi, Mohsen
    PHYSICAL REVIEW A, 2021, 103 (02)
  • [4] Quantum Error-Correction Codes on Abelian Groups
    Amini, Massoud
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2010, 5 (01): : 55 - 67
  • [5] Optimized quantum error-correction codes for experiments
    Nebendahl, V.
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [6] Absolutely maximally entangled states from phase states
    Mansour, M.
    Daoud, M.
    Bouhouch, L.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2019, 17 (01)
  • [7] Perturbative Stability and Error-Correction Thresholds of Quantum Codes
    Li, Yaodong
    O'Dea, Nicholas
    Khemani, Vedika
    PRX QUANTUM, 2025, 6 (01):
  • [8] A note on the Bloch representation of absolutely maximally entangled states
    Bo Li
    ShuHan Jiang
    Shao-Ming Fei
    XianQing Li-Jost
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [9] A note on the Bloch representation of absolutely maximally entangled states
    Li, Bo
    Jiang, ShuHan
    Fei, Shao-Ming
    Li-Jost, XianQing
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (04)
  • [10] A note on the Bloch representation of absolutely maximally entangled states
    Bo Li
    ShuHan Jiang
    Shao-Ming Fei
    XianQing Li-Jost
    Science China(Physics,Mechanics & Astronomy), 2018, (04) : 86 - 90