Numerical study of compressible turbulent flow in microtubes

被引:13
|
作者
Chen, CS
Kuo, WJ
机构
[1] Tamkang Univ, Dept Aerosp Engn, Tamsui 25137, Taiwan
[2] Tamkang Univ, Dept Mech & Electromech Engn, Tamsui, Taiwan
关键词
D O I
10.1080/1040778049026737
中图分类号
O414.1 [热力学];
学科分类号
摘要
Micro- and conventional compressible, turbulent tube flows were solved numerically in this study. The numerical procedure solves the compressible, turbulent boundary-layer equations using an implicit finite-difference scheme. The parabolic character of the boundary-layer equations renders the numerical procedure a very efficient, accurate, and robust tool for studying compressible microtube flows. The Baldwin-Lomax two-layer turbulence model is adopted in the numerical procedure. The numerically calculated friction factors are compared with the Blasius correlation, the Fanno line flow prediction, and the experimental data. The comparison shows that the numerically calculated friction factors for conventional tube flows agree quite well with the Blasius correlation. The numerical friction factors for microtube flows are larger than the Blasius correlation due to the compressibility effects. They also are greater than the Fanno line flow prediction and the experimental data. This is because the Fanno line flow and the experimental data assume that the flow is adiabatic, but in reality, compressible, turbulent microtube flows are neither adiabatic nor isothermal, as demonstrated by the numerical results in this study.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 50 条
  • [1] Experimental study on compressible flow in microtubes
    Celata, G. P.
    Cumo, M.
    McPhail, S. J.
    Tesfagabir, L.
    Zummo, G.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2007, 28 (01) : 28 - 36
  • [2] NUMERICAL STUDY OF THE COMPRESSIBLE TURBULENT-FLOW IN A LASER CAVITY
    VLAD, G
    BOIRON, O
    LEPALEC, G
    BOURNOT, P
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1995, 38 (14) : 2623 - 2633
  • [3] Comparison of numerical solvers for turbulent compressible flow
    Declercq, E
    Forestier, A
    Hérard, JM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (12): : 1011 - 1016
  • [4] A numerical study of compressible turbulent boundary layers
    Lagha, M.
    Kim, J.
    Eldredge, J. D.
    Zhong, X.
    [J]. PHYSICS OF FLUIDS, 2011, 23 (01)
  • [5] NUMERICAL SIMULATION OF THE TURBULENT COMPRESSIBLE GAS FLOW IN THE VANELESS MACHINES
    Kyncl, M.
    Pelant, J.
    [J]. ENGINEERING MECHANICS 2014, 2014, : 356 - 359
  • [6] Compressible Turbulent Flow Numerical Simulations of Tip Vortex Cavitation
    Khatami, F.
    van der Weide, E.
    Hoeijmakers, H.
    [J]. 9TH INTERNATIONAL SYMPOSIUM ON CAVITATION (CAV2015), 2015, 656
  • [7] Numerical Simulation of Developing Compressible Turbulent Flow with Heat Transfer
    Nouri-Borujerdi, A.
    Ziaei-Rad, M.
    Seume, J. R.
    [J]. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2009, 23 (04) : 801 - 809
  • [8] CHARACTERISTICS OF TURBULENT GAS FLOW IN MICROTUBES
    Hong, Chungpyo
    Matsushita, Shinichi
    Asako, Yutaka
    Ueno, Ichiro
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 7, PTS A-D, 2013, : 993 - 998
  • [9] A NUMERICAL STUDY ON FLUID FLOW AND PRESSURE DROP IN MICROTUBES
    Asli, K. H.
    Haghi, A. K.
    [J]. JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2010, 16 (03): : 382 - 392
  • [10] Numerical simulation of the turbulent compressible flow and the energy separation in the vortex tube
    Cao, Y
    Qi, YF
    Liu, JY
    Chen, GM
    Gong, MQ
    Wu, JF
    [J]. CRYOGENICS AND REFRIGERATION - PROCEEDINGS OF ICCR'2003, 2003, : 267 - 270