Deep Heterogeneous Dilation of LSTM for Transient-Phase Gesture Prediction Through High-Density Electromyography: Towards Application in Neurorobotics
被引:12
|
作者:
Sun, Tianyun
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Elect & Comp Engn, New York, NY 11201 USA
Facebook, Menlo Pk, CA USANYU, Dept Elect & Comp Engn, New York, NY 11201 USA
Sun, Tianyun
[1
,2
]
Hu, Qin
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Elect & Comp Engn, New York, NY 11201 USANYU, Dept Elect & Comp Engn, New York, NY 11201 USA
Hu, Qin
[1
]
Libby, Jacqueline
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Ctr Urban Sci & Progress CUSP, New York, NY 10003 USANYU, Dept Elect & Comp Engn, New York, NY 11201 USA
Libby, Jacqueline
[3
]
Atashzar, S. Farokh
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Elect & Comp Engn, New York, NY 11201 USA
NYU, Ctr Urban Sci & Progress CUSP, New York, NY 10003 USA
NYU, Dept Mech & Aerosp Engn, New York, NY 11201 USA
NYU, NYU WIRELESS, New York, NY 11201 USANYU, Dept Elect & Comp Engn, New York, NY 11201 USA
Atashzar, S. Farokh
[1
,3
,4
,5
]
机构:
[1] NYU, Dept Elect & Comp Engn, New York, NY 11201 USA
[2] Facebook, Menlo Pk, CA USA
[3] NYU, Ctr Urban Sci & Progress CUSP, New York, NY 10003 USA
[4] NYU, Dept Mech & Aerosp Engn, New York, NY 11201 USA
Human-centered robotics;
neurorobotics;
high density sEMG;
temporal dilation;
recurrent neural networks;
EMG;
D O I:
10.1109/LRA.2022.3142721
中图分类号:
TP24 [机器人技术];
学科分类号:
080202 ;
1405 ;
摘要:
Deep networks have been recently proposed to estimate motor intention using conventional bipolar surface electromyography (sEMG) signals for myoelectric control of neurorobots. In this regard, Deepnets are generally challenged by long training times (affecting practicality and calibration), complex model architectures (affecting the predictability of the outcomes), and a large number of trainable parameters (increasing the need for Big Data). Capitalizing on our recent work on homogeneous temporal dilation in a Recurrent Neural Network (RNN) model, this letter proposes, for the first time, heterogeneous temporal dilation in an LSTM model and applies that to high-density surface electromyography (HD-sEMG), allowing for the decoding of dynamic temporal dependencies with tunable temporal foci. In this letter, a 128-channel HD-sEMG signal space is considered due to the potential for enhancing the spatiotemporal resolution of humanrobot interfaces. Accordingly, this letter addresses a challenging motor intention decoding problem of neurorobots, namely, transient intention identification. Our approach uses only the dynamic and transient phase of gesture movements when the signals are not stabilized or plateaued, which can significantly enhance the temporal resolution of human-robot interfaces. This would eventually enhance seamless real-time implementations. Additionally, this letter introduces the concept of "dilation foci" to modulate the modeling of temporal variation in transient phases. In this work a high number (e.g., 65) of gestures is included, which adds to the complexity and significance of the understudied problem. Our results show state-of-the-art performance for gesture prediction in terms of accuracy, training time, and model convergence.
机构:
Facebook, Cambridge, MA USA
NYU, Dept Elect & Comp Engn, New York, NY 11201 USAFacebook, Cambridge, MA USA
Sun, Tianyun
Libby, Jacqueline
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Ctr Urban Sci & Progress CUSP, New York, NY USAFacebook, Cambridge, MA USA
Libby, Jacqueline
Rizzo, JohnRoss
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Sch Med, New York, NY 10016 USAFacebook, Cambridge, MA USA
Rizzo, JohnRoss
Atashzar, S. Farokh
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Ctr Urban Sci & Progress CUSP, New York, NY USA
NYU, Dept Elect & Comp Engn, New York, NY USA
NYU, Dept Mech & Aerosp Engn, New York, NY USA
NYU, NYU WIRELESS, New York, NY USAFacebook, Cambridge, MA USA
Atashzar, S. Farokh
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS),
2022,
: 6148
-
6153
机构:
NYU, Dept Elect & Comp Engn, New York, NY 10003 USANYU, Dept Elect & Comp Engn, New York, NY 10003 USA
Sun, Tianyun
Hu, Qin
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Elect & Comp Engn, New York, NY 10003 USANYU, Dept Elect & Comp Engn, New York, NY 10003 USA
Hu, Qin
Gulati, Paras
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Elect & Comp Engn, New York, NY 10003 USANYU, Dept Elect & Comp Engn, New York, NY 10003 USA
Gulati, Paras
Atashzar, S. Farokh
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Elect & Comp Engn, New York, NY 10003 USA
NYU, Dept Mech & Aerosp Engn, New York, NY 10003 USA
NYU, Ctr Urban Sci & Progress, NewYork Univ Wireless, Brooklyn, NY 11201 USANYU, Dept Elect & Comp Engn, New York, NY 10003 USA
机构:
Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
Azar, Golara Ahmadi
Hu, Qin
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Elect & Comp Engn, New York, NY 11201 USAUniv Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
Hu, Qin
Emami, Melika
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
Optum AI Labs, Eden Prairie, MN 55344 USAUniv Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
Emami, Melika
Fletcher, Alyson
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
Univ Calif Los Angeles, Dept Stat Math & Comp Sci, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
Fletcher, Alyson
Rangan, Sundeep
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Elect & Comp Engn, New York, NY 11201 USA
NYU WIRELESS, New York, NY 11201 USAUniv Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
Rangan, Sundeep
Atashzar, S. Farokh
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Elect & Comp Engn, New York, NY 11201 USA
NYU WIRELESS, Dept Mech & Aerosp Engn, Biomed Engn, New York, NY 11201 USA
NYU Ctr Urban Sci & Progress CUSP, New York, NY 11201 USAUniv Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA