Margulis-Ruelle inequality for general manifolds

被引:0
|
作者
Liao, Gang [1 ]
Qiu, Na [1 ]
机构
[1] Soochow Univ, Ctr Dynam Syst & Differential Equat, Sch Math Sci, Suzhou 215006, Peoples R China
关键词
boundary; Lyapunov exponent; metric entropy; non-compactness;
D O I
10.1017/etds.2021.44
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the Margulis-Ruelle inequality for general Riemannian manifolds (possibly non-compact and with a boundary) and show that it always holds under an integrable condition.
引用
收藏
页码:2064 / 2079
页数:16
相关论文
共 50 条
  • [1] Margulis-Ruelle Inequality
    Qian, Min
    Xie, Jian-Sheng
    Zhu, Shu
    SMOOTH ERGODIC THEORY FOR ENDOMORPHISMS, 2009, 1978 : 9 - 13
  • [2] A MARGULIS-RUELLE INEQUALITY FOR RANDOM DYNAMICAL-SYSTEMS
    BAHNMULLER, J
    BOGENSCHUTZ, T
    ARCHIV DER MATHEMATIK, 1995, 64 (03) : 246 - 253
  • [3] Margulis numbers for Haken manifolds
    Culler, Marc
    Shalen, Peter B.
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 190 (01) : 445 - 475
  • [4] On Margulis cusps of hyperbolic -manifolds
    Erlandsson, Viveka
    Zakeri, Saeed
    GEOMETRIAE DEDICATA, 2015, 174 (01) : 75 - 103
  • [5] Margulis numbers for Haken manifolds
    Marc Culler
    Peter B. Shalen
    Israel Journal of Mathematics, 2012, 190 : 445 - 475
  • [6] RUELLE INEQUALITY FOR THE ENTROPY OF RANDOM DIFFEOMORPHISMS
    GONG, GL
    LIU, PD
    QIAN, M
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1992, 35 (09): : 1056 - 1065
  • [7] RUELLE'S INEQUALITY IN NEGATIVE CURVATURE
    Riquelme, Felipe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (06) : 2809 - 2825
  • [8] MARGULIS LEMMA ON MANIFOLDS WITH RICCI CURVATURE BOUNDED BELOW
    Courtois, Gilles
    ASTERISQUE, 2015, (367) : 25 - 56
  • [9] Ruelle and Quantum Resonances for Open Hyperbolic Manifolds
    Hadfield, Charles
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (05) : 1445 - 1480
  • [10] A Generic Margulis Number for Hyperbolic 3-Manifolds
    Shalen, Peter B.
    TOPOLOGY AND GEOMETRY IN DIMENSION THREE: TRIANGULATIONS, INVARIANTS, AND GEOMETRIC STRUCTURES, 2011, 560 : 103 - 109