Backward error analysis of polynomial approximations for computing the action of the matrix exponential

被引:8
|
作者
Caliari, Marco [1 ]
Kandolf, Peter [2 ]
Zivcovich, Franco [3 ]
机构
[1] Univ Verona, Dept Comp Sci, Verona, Italy
[2] Univ Innsbruck, Dept Math, Innsbruck, Austria
[3] Univ Trento, Dept Math, Trento, Italy
关键词
Backward error analysis; Action of matrix exponential; Leja-Hermite interpolation; Taylor series; DIVIDED DIFFERENCES; INTERPOLATION; ALGORITHM; COMPUTATION;
D O I
10.1007/s10543-018-0718-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe how to perform the backward error analysis for the approximation of exp(A) v by p(s(-1) A)(s)v, for any given polynomial p(x). The result of this analysis is an optimal choice of the scaling parameter s which assures a bound on the backward error, i.e. the equivalence of the approximation with the exponential of a slightly perturbed matrix. Thanks to the SageMath package expbea we have developed, one can optimize the performance of the given polynomial approximation. On the other hand, we employ the package for the analysis of polynomials interpolating the exponential function at so called Leja-Hermite points. The resulting method for the action of the matrix exponential can be considered an extension of both Taylor series approximation and Leja point interpolation. We illustrate the behavior of the new approximation with several numerical examples.
引用
收藏
页码:907 / 935
页数:29
相关论文
共 50 条
  • [1] Backward error analysis of polynomial approximations for computing the action of the matrix exponential
    Marco Caliari
    Peter Kandolf
    Franco Zivcovich
    [J]. BIT Numerical Mathematics, 2018, 58 : 907 - 935
  • [2] THE LEJA METHOD REVISITED: BACKWARD ERROR ANALYSIS FOR THE MATRIX EXPONENTIAL
    Caliari, Marco
    Kandolf, Peter
    Ostermann, Alexander
    Rainer, Stefan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03): : A1639 - A1661
  • [3] Relative error analysis of matrix exponential approximations for numerical integration
    Maset, Stefano
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2021, 29 (02) : 119 - 158
  • [4] ERROR ESTIMATES FOR POLYNOMIAL KRYLOV APPROXIMATIONS TO MATRIX FUNCTIONS
    Diele, Fasma
    Moret, Igor
    Ragni, Stefania
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) : 1546 - 1565
  • [5] COMPUTING THE ACTION OF THE MATRIX EXPONENTIAL, WITH AN APPLICATION TO EXPONENTIAL INTEGRATORS
    Al-Mohy, Awad H.
    Higham, Nicholas J.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02): : 488 - 511
  • [6] Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation
    Bader, Philipp
    Blanes, Sergio
    Casas, Fernando
    [J]. MATHEMATICS, 2019, 7 (12)
  • [7] Efficient orthogonal matrix polynomial based method for computing matrix exponential
    Sastre, J.
    Ibanez, J.
    Defez, E.
    Ruiz, P.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (14) : 6451 - 6463
  • [8] A further analysis of backward error in polynomial deflation
    Wang, Min
    Su, Yangfeng
    [J]. BIT NUMERICAL MATHEMATICS, 2019, 59 (01) : 271 - 297
  • [9] A further analysis of backward error in polynomial deflation
    Min Wang
    Yangfeng Su
    [J]. BIT Numerical Mathematics, 2019, 59 : 271 - 297
  • [10] POLYNOMIAL APPROXIMATIONS OF EXPONENTIAL INTEGRALS
    DRAYSON, SR
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1968, 8 (10): : 1733 - &