Beyond Parity: Fairness Objectives for Collaborative Filtering

被引:0
|
作者
Yao, Sirui [1 ]
Huang, Bert [1 ]
机构
[1] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017) | 2017年 / 30卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study fairness in collaborative-filtering recommender systems, which are sensitive to discrimination that exists in historical data. Biased data can lead collaborative-filtering methods to make unfair predictions for users from minority groups. We identify the insufficiency of existing fairness metrics and propose four new metrics that address different forms of unfairness. These fairness metrics can be optimized by adding fairness terms to the learning objective. Experiments on synthetic and real data show that our new metrics can better measure fairness than the baseline, and that the fairness objectives effectively help reduce unfairness.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] FairCF: fairness-aware collaborative filtering
    Pengyang SHAO
    Le WU
    Lei CHEN
    Kun ZHANG
    Meng WANG
    ScienceChina(InformationSciences), 2022, 65 (12) : 127 - 141
  • [2] FairCF: fairness-aware collaborative filtering
    Shao, Pengyang
    Wu, Le
    Chen, Lei
    Zhang, Kun
    Wang, Meng
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (12)
  • [3] FairCF: fairness-aware collaborative filtering
    Pengyang Shao
    Le Wu
    Lei Chen
    Kun Zhang
    Meng Wang
    Science China Information Sciences, 2022, 65
  • [4] Fairness-aware Differentially Private Collaborative Filtering
    Yang, Zhenhuan
    Ge, Yingqiang
    Su, Congzhe
    Wang, Dingxian
    Zhao, Xiaoting
    Ying, Yiming
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 927 - 931
  • [5] Pareto Optimality for Fairness-constrained Collaborative Filtering
    Hao, Qianxiu
    Xu, Qianqian
    Yang, Zhiyong
    Huang, Qingming
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5619 - 5627
  • [6] Average User-Side Counterfactual Fairness for Collaborative Filtering
    Shao, Pengyang
    Wu, Le
    Zhang, Kun
    Lian, Defu
    Hong, Richang
    Li, Yong
    Wang, Meng
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (05)
  • [7] Feature-blind fairness in collaborative filtering recommender systems
    Borges, Rodrigo
    Stefanidis, Kostas
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (04) : 943 - 962
  • [8] Feature-blind fairness in collaborative filtering recommender systems
    Rodrigo Borges
    Kostas Stefanidis
    Knowledge and Information Systems, 2022, 64 : 943 - 962
  • [9] Beyond Collaborative Filtering: The List Recommendation Problem
    Shalom, Oren Sar
    Koenigstein, Noam
    Paquet, Ulrich
    Vanchinathan, Hastagiri P.
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), 2016, : 63 - 72
  • [10] Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering
    Anelli, Vito Walter
    Deldjoo, Yashar
    Di Noia, Tommaso
    Malitesta, Daniele
    Paparella, Vincenzo
    Pomo, Claudio
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT I, 2023, 13980 : 33 - 48